

GW PROTO

Protocol used by a GridWorks Spaceheat SCADA

Installation

Note

gridworks requires python 3.10 or higher.

(venv)$ pip install gridworks-protocol

GridWorks lexicon

	Actor

	ActorClass

	BooleanActuator

	Component

	Data Polling, Capturing and Transmitting

	EguageIo

	HardwareLayout

	GridWorks TankModule1

	Iot Hubs

	MakeModel

	MultipurposeSensor

	SpaceheatNode

	Relay State

	Role

	Spaceheat SCADA

	SimpleSensor

	TelemetryName

SpaceheatActor

This enum captures the role of the pro-actor for a Spaceheat Node. Spaceheat Nodes
with no actor are assigned the enum NoActor

Back to Lexicon

ActorClass

The opensource GridWorks Spaceheat Scada software [https://github.com/thegridelectric/gw-scada-spaceheat-python]
is organized internally as a set of actors, with the prime actor being the SCADA itself. The SCADA must be
able to deal with and process a wide variety of heating system arrangements. This is done in a Hardware Layout,
which among other things organizes relevant physical devices in the heating system (thermal stores, circulator pumps, the
heat pump, resistive heating elements, relays for heating elements). The primary objects in the Hardware Layout
are space heat nodes, although the Hardware Layout also organizes and captures information about the specific
hardware getting used (i.e. a serial number for a component, as well as its make/model).

All of the actors in the Spaceheat Scada are associated with space heat nodes. The Space heat Node’s
ActorClass is an Actor enum used to determine the code used to run the actor. One node in the hardware layout will have
an actor class of Actor.Scada (ActorClassEnumSymbol 6d37aa41): this is the SpaceHeat Node running the main
SCADA code and supervising/managing all the other Actors.

TODO: discuss pro-actors

Back to Lexicon

Boolean Actuator

ADD

Back to Lexicon

Component

The actual physical devices monitored and actuated by a Spaceheat SCADA require

Back to Lexicon

Data Polling, Capturing and Reporting

Polling: A synchronous action taken by a local SCADA actor to query an external object for a raw physical state reading.

Capturing: The act of retaining a phsyical state read by a local SCADA actor for sending up in a message to its AtomicTNode.

Transmitting: The act of sending data up to the AtomicTNode.

Capturing can also occur both _synchronously_ and _asynchronously_.

Back to Lexicon

EgaugeIo

When the component associated to a PowerMeter ShNode has MakeModel EGAUGE__4030, there is a significant amount of configuration required
to specify both what is read from the eGauge (input) and what is then sent up to the SCADA (output). This type handles that information.

Back to Lexicon

Hardware Layout

The SCADA must be

able to deal with and process a wide variety of heating system arrangements. This is done in a Hardware Layout,
which among other things organizes relevant physical devices in the heating system (thermal stores, circulator pumps, the
heat pump, resistive heating elements, relays for heating elements). The primary objects in the Hardware Layout
are space heat nodes, although the Hardware Layout also organizes and captures information about the specific
hardware getting used (i.e. a serial number for a component, as well as its make/model).

Back to Lexicon

GridWorks TankModule1

TODO: explain what the GridWorks TankModule is, how we’ve built
it using Fibaro SmartImplents, how we talk to it via a hubitat
hub, how to do it yourself, and how the software drivers work.

hubitat.tank.settings.gt

IoT Hubs

Hubitat

TODO: How to use SCADA code with a Hubitat IoT hub.

Make Model

Determines Make/Model of device associated to a Spaceheat Node supervised by SCADA

Used to assign the correct driver code to various sensors. For example, if we are using an Adafruit 1-wire temp sensor
identified by Adafruit as Product Id 642, the associated SimpleSensor actor in the SCADA code knows that the HardwareLayout
will include the unique identifier for that 1-wire, and will know to use the appropriate driver code in the repository [https://github.com/thegridelectric/gw-scada-spaceheat-python/blob/main/gw_spaceheat/drivers/simple_temp_sensor/adafruit_642__simple_temp_sensor_driver.py].

Back to Lexicon

Multipurpose Sensor

A sensor that either reads multiple kinds of readings from the same sensing device
(for example reads current and voltage), reads multiple different objects (temperature
from two different thermisters) or both.

Back to Lexicon

SpaceheatNode

A SpaceheatNode, or ShNode, ….

The Spaceheat SCADA maintains a set of SpaceHeat Nodes. These nodes are categorized using two different enums: SpaceheatActor, and SpaceheatRole.

Back to Lexicon

Relay State

A Relay State of 0 indicates the relay is OPEN (off). A Relay State of 1 indicates the
relay is CLOSED (on). Note that 0 means the relay is open whether or not the relay is
normally open or normally closed (For a normally open relay, the relay is ENERGIZED when it
is in state 0 and DE-ENERGIZED when it is in state 1.)

REPORTING THE RELAY STATE.

Boolean actuator actors report when they send an actuation command to its driver so
that the SCADA can add this to information to be sent up to the AtomicTNode.

Boolean actuator actors read the state of their relay, when possible.

Note that a reading of the state of the actuator may not mean the relay is in the
reported position. For example, the NCD relay requires two power sources - one from
the Pi and one a lowish DC voltage from another plug (12 or 24V). If the second power
source is off, the relay will still report being on when it is actually off.

Note also that the thing getting actuated (for example the boost element in the water
tank) may not be getting any power because of another relay in series. For example, we
can throw a large 240V breaker in the test garage and the NCD relay will actuate without
the boost element turning on. Or the element could be burned out.

So measuring the current and/or power of the thing getting
actuated is really the best test.

Back to Lexicon

Spaceheat Node Role

Categorizes SpaceheatNodes by their function within the heating system

Back to Lexicon

Spaceheat SCADA

A Spaceheat SCADA is a SCADA [https://gridworks.readthedocs.io/en/latest/scada.html] whose
TerminalAsset [https://gridworks.readthedocs.io/en/latest/terminal-asset.html] represents
a thermal storage heating system for heating a building and/or a room.

Scada as Spaceheat actor

The opensource GridWorks Spaceheat Scada software [https://github.com/thegridelectric/gw-scada-spaceheat-python]
is organized internally as a set of actors, with the prime actor being the SCADA itself. The SCADA must be
able to deal with and process a wide variety of heating system arrangements. This is done in a Hardware Layout,
which among other things organizes relevant physical devices in the heating system (thermal stores, circulator pumps, the
heat pump, resistive heating elements, relays for heating elements). The primary objects in the Hardware Layout
are space heat nodes, although the Hardware Layout also organizes and captures information about the specific
hardware getting used (i.e. a serial number for a component, as well as its make/model).

All of the actors in the Spaceheat Scada are associated with space heat nodes. The Space heat Node’s
ActorClass is an Actor enum used to determine the code used to run the actor. One node in the hardware layout will have
an actor class of Actor.Scada (ActorClassEnumSymbol 6d37aa41): this is the SpaceHeat Node running the main
SCADA code and supervising/managing all the other Actors.

TODO: discuss pro-actors

Back to Lexicon

Simple Sensor

A SimpleSensor is an ActorClass for a SpaceheatNode. An ShNode is a SimpleSensor if
it is both the device taking a reading and the thing getting read. There can also
only be one type of reading.

Here is an example.

A 1-wire temp sensor read by a SCADA has only one type of reading: temperature in degrees
C times 1000. It also only reads one thing: say, water temp at the top of the tank where
the sensor is located.

A SpaceHeat node for a.tank.temp1 conflates the 1-wire reading that temperature with
the location and temperature itself. this is a SimpelSensor

Back to Lexicon

TelemetryName

TelemetryName is a foundational Enum used by SpaceHeat SCADAs …

Back to Lexicon

Enum Application Shared Language (ASL) Specifications

spaceheat.make.model.001

{
 "gtr_asl": "001",
 "enum_name": "spaceheat.make.model",
 "enum_version": "001",
 "description": "Determines Make/Model of device associated to a Spaceheat Node supervised by SCADA",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/make-model.html",
 "ssot": "https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#spaceheatmakemodel",
 "values": [
 "UnknownMake__UnknownModel",
 "Egauge__4030",
 "NCD__PR8-14-SPST",
 "Adafruit__642",
 "GridWorks__TSnap1",
 "GridWorks__WaterTempHighPrecision",
 "Gridworks__SimPm1",
 "SchneiderElectric__Iem3455",
 "GridWorks__SimBool30AmpRelay",
 "OpenEnergy__EmonPi",
 "GridWorks__SimTSnap1",
 "Atlas__EzFlo",
 "Hubitat__C7__LAN1",
 "GridWorks__Tank_Module_1",
 "Fibaro__Analog_Temp_Sensor",
 "Amphenol__NTC_10K_Thermistor_MA100GG103BN",
 "YHDC__SCT013-100",
 "Magnelab__SCT-0300-050",
 "GridWorks__MultiTemp1",
 "Krida__Emr16-I2c-V3"
],
 "value_to_gt_symbol": {
 "UNKNOWNMAKE__UNKNOWNMODEL": "00000000",
 "EGAUGE__4030": "beb6d3fb",
 "NCD__PR814SPST": "fabfa505",
 "ADAFRUIT__642": "acd93fb3",
 "GRIDWORKS__TSNAP1": "d0178dc3",
 "GRIDWORKS__WATERTEMPHIGHPRECISION": "f8b497e8",
 "GRIDWORKS__SIMPM1": "076da322",
 "SCHNEIDERELECTRIC__IEM3455": "d300635e",
 "GRIDWORKS__SIMBOOL30AMPRELAY": "e81d74a8",
 "OPENENERGY__EMONPI": "c75d269f",
 "GRIDWORKS__SIMTSNAP1": "3042c432",
 "ATLAS__EZFLO": "d0b0e375",
 "HUBITAT__C7__LAN1": "4d649420",
 "GRIDWORKS__TANK_MODULE_1": "bd759051",
 "FIBARO__ANALOG_TEMP_SENSOR": "1f19839d",
 "AMPHENOL__NTC_10K_THERMISTOR_MA100GG103BN": "46f21cd5",
 "YHDC__SCT013100": "08da3f7d",
 "MAGNELAB__SCT0300050": "a8d9a70d",
 "GRIDWORKS__MULTITEMP1": "bb31d136",
 "KRIDA__EMR16I2CV3": "3353ce46"
 },
 "value_to_version": {
 "UNKNOWNMAKE__UNKNOWNMODEL": "000",
 "EGAUGE__4030": "000",
 "NCD__PR814SPST": "000",
 "ADAFRUIT__642": "000",
 "GRIDWORKS__TSNAP1": "000",
 "GRIDWORKS__WATERTEMPHIGHPRECISION": "000",
 "GRIDWORKS__SIMPM1": "000",
 "SCHNEIDERELECTRIC__IEM3455": "000",
 "GRIDWORKS__SIMBOOL30AMPRELAY": "000",
 "OPENENERGY__EMONPI": "000",
 "GRIDWORKS__SIMTSNAP1": "000",
 "ATLAS__EZFLO": "000",
 "HUBITAT__C7__LAN1": "001",
 "GRIDWORKS__TANK_MODULE_1": "001",
 "FIBARO__ANALOG_TEMP_SENSOR": "001",
 "AMPHENOL__NTC_10K_THERMISTOR_MA100GG103BN": "001",
 "YHDC__SCT013100": "001",
 "MAGNELAB__SCT0300050": "001",
 "GRIDWORKS__MULTITEMP1": "001",
 "KRIDA__EMR16I2CV3": "001"
 },
 "value_descriptions": {
 "UnknownMake__UnknownModel": "",
 "Egauge__4030": "A power meter in Egauge's 403x line. More Info: https://drive.google.com/drive/u/0/folders/1abJ-o9tlTscsQpMvT6SHxIm5j5aODgfA",
 "NCD__PR8-14-SPST": "NCD's 4-channel high-power relay controller + 4 GPIO with I2C interface. More Info: https://store.ncd.io/product/4-channel-high-power-relay-controller-4-gpio-with-i2c-interface/?attribute_pa_choose-a-relay=20-amp-spdt",
 "Adafruit__642": "Adafruit's high-temp, water-proof 1-wire temp sensor. More Info: https://www.adafruit.com/product/642",
 "GridWorks__TSnap1": "Actual GridWorks TSnap 1.0 SCADA Box.",
 "GridWorks__WaterTempHighPrecision": "Simulated temp sensor.",
 "Gridworks__SimPm1": "Simulated power meter.",
 "SchneiderElectric__Iem3455": "Schneider Electric IEM 344 utility meter.",
 "GridWorks__SimBool30AmpRelay": "Simulated relay.",
 "OpenEnergy__EmonPi": "Open Energy's open source multipurpose sensing device (including internal power meter). More Info: https://docs.openenergymonitor.org/emonpi/technical.html",
 "GridWorks__SimTSnap1": "Simulated SCADA Box.",
 "Atlas__EzFlo": "Atlas Scientific EZO Embedded Flow Meter Totalizer, pulse to I2C. More Info: https://drive.google.com/drive/u/0/folders/142bBV1pQIbMpyIR_0iRUr5gnzWgknOJp",
 "Hubitat__C7__LAN1": "This refers to a Hubitat C7 that has been configured in a specific way with respect to the APIs it presents on the Local Area Network. The Hubitat C7 is a home automation hub that supports building ZigBee and ZWave meshes, plugs into Ethernet, has a reasonable user interface and has an active community of open-source developers who create drivers and package managers for devices, and supports the creation of various types of APIs on the Local Area Network. More Info: https://drive.google.com/drive/folders/1AqAU_lC2phzuI9XRYvogiIYA7GXNtlr6",
 "GridWorks__Tank_Module_1": "This refers to a small module designed and assembled by GridWorks that is meant to be mounted to the side of a hot water tank. It requires 24V DC and has 4 temperature sensors coming out of it labeled 1, 2, 3 and 4. It is meant to provide temperature readings (taken within a half a second of each other) of all 4 of its sensors once a minute. More Info: https://drive.google.com/drive/folders/1GSxDd8Naf1GKK_fSOgQU933M1UcJ4r8q",
 "Fibaro__Analog_Temp_Sensor": "This enum refers to a Fibaro FGBS-222 home automation device that has been configured in a specific way. This includes (1) being attached to two 10K NTC thermistors and a specific voltage divider circuit that specifies its temperature as a function of voltage and (2) one of its potential free outputs being in-line with the power of a partner Fibaro, so that it can power cycle its partner (because there are reports of Fibaros no longer reporting temp change after weeks or months until power cylced). The Fibaro itself is a tiny (29 X 18 X 13 mm) Z-Wave device powered on 9-30V DC that can read up to 6 1-wire DS18B20 temp sensors, 2 0-10V analog inputs and also has 2 potential free outputs. More Info: https://drive.google.com/drive/u/0/folders/1Muhsvw00goppHIfGSEmreX4hM6V78b-m",
 "Amphenol__NTC_10K_Thermistor_MA100GG103BN": "A small gauge, low-cost, rapid response NTC 10K Thermistor designed for medical applications. More Info: https://drive.google.com/drive/u/0/folders/11HW4ov66UvxKAwqApW6IrtoXatZBLQkd",
 "YHDC__SCT013-100": "YHDC current transformer More Info: https://en.yhdc.com/product/SCT013-401.html",
 "Magnelab__SCT-0300-050": "Magnelab 50A current transformer",
 "GridWorks__MultiTemp1": "GridWorks Analog temperature sensor that has 12 channels (labeled 1-12) to read 12 10K NTC Thermistors. It is comprised of 3 NCD ADS 1115 I2C temperature sensors with I2C Addresses 0x4b, 0x48, 0x49. More Info: https://drive.google.com/drive/u/0/folders/1OuY0tunaad2Ie4Id3zFB7FcbEwHizWuL",
 "Krida__Emr16-I2c-V3": "16-Channel I2C Low Voltage Electromagnetic Relay Board More Info: https://drive.google.com/drive/u/0/folders/1jL82MTRKEh9DDmxJFQ2yU2cjqnVD9Ik7"
 },
 "default_value": "UnknownMake__UnknownModel"
}

local.comm.interface.000

{
 "gtr_asl": "001",
 "enum_name": "local.comm.interface",
 "enum_version": "000",
 "description": "Categorization of in-house comm mechanisms for SCADA",
 "ssot": "https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#localcomminterface",
 "values": [
 "Unknown",
 "I2C",
 "Ethernet",
 "OneWire",
 "RS485",
 "SimRabbit",
 "Wifi",
 "Analog_4_20_mA",
 "RS232"
],
 "value_to_gt_symbol": {
 "UNKNOWN": "00000000",
 "I2C": "9ec8bc49",
 "ETHERNET": "c1e7a955",
 "ONEWIRE": "ae2d4cd8",
 "RS485": "a6a4ac9f",
 "SIMRABBIT": "efc144cd",
 "WIFI": "46ac6589",
 "ANALOG_4_20_MA": "653c73b8",
 "RS232": "0843a726"
 },
 "value_to_version": {
 "UNKNOWN": "000",
 "I2C": "000",
 "ETHERNET": "000",
 "ONEWIRE": "000",
 "RS485": "000",
 "SIMRABBIT": "000",
 "WIFI": "000",
 "ANALOG_4_20_MA": "000",
 "RS232": "000"
 },
 "value_descriptions": {
 "Unknown": "",
 "I2C": "",
 "Ethernet": "",
 "OneWire": "",
 "RS485": "",
 "SimRabbit": "",
 "Wifi": "",
 "Analog_4_20_mA": "",
 "RS232": ""
 },
 "default_value": "Unknown"
}

sh.node.role.000

{
 "gtr_asl": "001",
 "enum_name": "sh.node.role",
 "enum_version": "000",
 "description": "Categorizes SpaceheatNodes by their function within the heating system",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/spaceheat-node-role.html",
 "ssot": "https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#shnoderole",
 "values": [
 "Unknown",
 "Scada",
 "HomeAlone",
 "Atn",
 "PowerMeter",
 "BoostElement",
 "BooleanActuator",
 "DedicatedThermalStore",
 "TankWaterTempSensor",
 "PipeTempSensor",
 "RoomTempSensor",
 "OutdoorTempSensor",
 "PipeFlowMeter",
 "HeatedSpace",
 "HydronicPipe",
 "BaseboardRadiator",
 "RadiatorFan",
 "CirculatorPump",
 "MultiChannelAnalogTempSensor",
 "Outdoors"
],
 "value_to_gt_symbol": {
 "Unknown": "00000000",
 "Scada": "d0afb424",
 "HomeAlone": "863e50d1",
 "Atn": "6ddff83b",
 "PowerMeter": "9ac68b6e",
 "BoostElement": "99c5f326",
 "BooleanActuator": "57b788ee",
 "DedicatedThermalStore": "3ecfe9b8",
 "TankWaterTempSensor": "73308a1f",
 "PipeTempSensor": "c480f612",
 "RoomTempSensor": "fec74958",
 "OutdoorTempSensor": "5938bf1f",
 "PipeFlowMeter": "ece3b600",
 "HeatedSpace": "65725f44",
 "HydronicPipe": "fe3cbdd5",
 "BaseboardRadiator": "05fdd645",
 "RadiatorFan": "6896109b",
 "CirculatorPump": "b0eaf2ba",
 "MultiChannelAnalogTempSensor": "661d7e73",
 "Outdoors": "dd975b31"
 },
 "value_to_version": {
 "Unknown": "000",
 "Scada": "000",
 "HomeAlone": "000",
 "Atn": "000",
 "PowerMeter": "000",
 "BoostElement": "000",
 "BooleanActuator": "000",
 "DedicatedThermalStore": "000",
 "TankWaterTempSensor": "000",
 "PipeTempSensor": "000",
 "RoomTempSensor": "000",
 "OutdoorTempSensor": "000",
 "PipeFlowMeter": "000",
 "HeatedSpace": "000",
 "HydronicPipe": "000",
 "BaseboardRadiator": "000",
 "RadiatorFan": "000",
 "CirculatorPump": "000",
 "MultiChannelAnalogTempSensor": "000",
 "Outdoors": "000"
 },
 "value_descriptions": {
 "Unknown": "Unknown Role",
 "Scada": "Primary SCADA",
 "HomeAlone": "HomeAlone GNode",
 "Atn": "AtomicTNode",
 "PowerMeter": "A SpaceheatNode representing the power meter that is used to settle financial transactions with the TerminalAsset. That is, this is the power meter whose accuracy is certified in the creation of the TerminalAsset GNode via creation of the TaDeed. More Info: https://gridworks.readthedocs.io/en/latest/terminal-asset.html",
 "BoostElement": "Resistive element used for providing heat to a thermal store.",
 "BooleanActuator": "A solid state or mechanical relay with two states (open, closed)",
 "DedicatedThermalStore": "A dedicated thermal store within a thermal storage heating system - could be one or more water tanks, phase change material, etc.",
 "TankWaterTempSensor": "A temperature sensor used for measuring temperature inside or on the immediate outside of a water tank.",
 "PipeTempSensor": "A temperature sensor used for measuring the temperature of a tank. Typically curved metal thermistor with thermal grease for good contact.",
 "RoomTempSensor": "A temperature sensor used for measuring room temperature, or temp in a heated space more generally.",
 "OutdoorTempSensor": "A temperature sensor used for measuring outdoor temperature.",
 "PipeFlowMeter": "A meter that measures flow of liquid through a pipe, in units of VOLUME/TIME",
 "HeatedSpace": "A Heated Space.",
 "HydronicPipe": "A pipe carrying techinical water or other fluid (e.g. glycol) in a heating system.",
 "BaseboardRadiator": "A baseboard radiator - one kind of emitter in a hydronic heating system.",
 "RadiatorFan": "A fan that can amplify the power out of a radiator.",
 "CirculatorPump": "Circulator pump for one or more of the hydronic pipe loops",
 "MultiChannelAnalogTempSensor": "An analog multi channel temperature sensor",
 "Outdoors": "The outdoors"
 },
 "default_value": "Unknown"
}

spaceheat.unit.000

{
 "gtr_asl": "001",
 "enum_name": "spaceheat.unit",
 "enum_version": "000",
 "description": "Specifies the physical unit of sensed data reported by SCADA",
 "ssot": "https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#spaceheatunit",
 "values": [
 "Unknown",
 "Unitless",
 "W",
 "Celcius",
 "Fahrenheit",
 "Gpm",
 "WattHours",
 "AmpsRms",
 "VoltsRms",
 "Gallons"
],
 "value_to_gt_symbol": {
 "Unknown": "00000000",
 "Unitless": "ec972387",
 "W": "f459a9c3",
 "Celcius": "ec14bd47",
 "Fahrenheit": "7d8832f8",
 "Gpm": "b4580361",
 "WattHours": "d66f1622",
 "AmpsRms": "a969ac7c",
 "VoltsRms": "e5d7555c",
 "Gallons": "8e123a26"
 },
 "value_to_version": {
 "Unknown": "000",
 "Unitless": "000",
 "W": "000",
 "Celcius": "000",
 "Fahrenheit": "000",
 "Gpm": "000",
 "WattHours": "000",
 "AmpsRms": "000",
 "VoltsRms": "000",
 "Gallons": "000"
 },
 "value_descriptions": {
 "Unknown": "",
 "Unitless": "",
 "W": "",
 "Celcius": "",
 "Fahrenheit": "",
 "Gpm": "",
 "WattHours": "",
 "AmpsRms": "",
 "VoltsRms": "",
 "Gallons": ""
 },
 "default_value": "Unknown"
}

sh.actor.class.001

{
 "gtr_asl": "001",
 "enum_name": "sh.actor.class",
 "enum_version": "001",
 "description": "Determines the code running Spaceheat Nodes supervised by Spaceheat SCADA software",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/actor-class.html",
 "ssot": "https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#shactorclass",
 "values": [
 "NoActor",
 "Scada",
 "HomeAlone",
 "BooleanActuator",
 "PowerMeter",
 "Atn",
 "SimpleSensor",
 "MultipurposeSensor",
 "Thermostat",
 "HubitatTelemetryReader",
 "HubitatTankModule",
 "HubitatPoller"
],
 "value_to_gt_symbol": {
 "NoActor": "00000000",
 "Scada": "6d37aa41",
 "HomeAlone": "32d3d19f",
 "BooleanActuator": "fddd0064",
 "PowerMeter": "2ea112b9",
 "Atn": "b103058f",
 "SimpleSensor": "dae4b2f0",
 "MultipurposeSensor": "7c483ad0",
 "Thermostat": "4a9c1785",
 "HubitatTelemetryReader": "0401b27e",
 "HubitatTankModule": "e2877329",
 "HubitatPoller": "00000100"
 },
 "value_to_version": {
 "NoActor": "000",
 "Scada": "000",
 "HomeAlone": "000",
 "BooleanActuator": "000",
 "PowerMeter": "000",
 "Atn": "000",
 "SimpleSensor": "000",
 "MultipurposeSensor": "000",
 "Thermostat": "000",
 "HubitatTelemetryReader": "001",
 "HubitatTankModule": "001",
 "HubitatPoller": "001"
 },
 "value_descriptions": {
 "NoActor": "A SpaceheatNode that does not have any code running on its behalf within the SCADA, but is instead only a reference object (for example, a tank of hot water or a resistive element) that can be discussed (for example, the power drawn by the resistive element can be measured) or evaluated (for example, a set of 5 different temperatures in different places on the tank can be used to estimate total thermal energy in the tank).",
 "Scada": "The SCADA actor is the prime piece of code running and supervising other ProActors within the SCADA code. It is also responsible for managing the state of TalkingWith the AtomicTNode, as well maintaining and reporting a boolean state variable that indicates whether it is following dispatch commands from the AtomicTNode XOR following dispatch commands from its own HomeAlone actor.",
 "HomeAlone": "HomeAlone is an abstract Spaceheat Actor responsible for dispatching the SCADA when it is not talking with the AtomicTNode.",
 "BooleanActuator": "A SpaceheatNode representing a generic boolean actuator capable of turning on (closing a circuit) or turning off (opening a circuit).",
 "PowerMeter": "A SpaceheatNode representing the power meter that is used to settle financial transactions with the TerminalAsset. That is, this is the power meter whose accuracy is certified in the creation of the TerminalAsset GNode via creation of the TaDeed. More Info: https://gridworks.readthedocs.io/en/latest/terminal-asset.html",
 "Atn": "A SpaceheatNode representing the AtomicTNode. Note that the code running the AtomicTNode is not local within the SCADA code, except for a stub used for testing purposes. More Info: https://gridworks.readthedocs.io/en/latest/atomic-t-node.html",
 "SimpleSensor": "A SpaceheatNode representing a sensor that measures a single category of quantity (for example, temperature) for a single object (for example, on a pipe). More Info: https://gridworks-protocol.readthedocs.io/en/latest/simple-sensor.html",
 "MultipurposeSensor": "A sensor that either reads multiple kinds of readings from the same sensing device (for example reads current and voltage), reads multiple different objects (temperature from two different thermisters) or both. More Info: https://gridworks-protocol.readthedocs.io/en/latest/multipurpose-sensor.html",
 "Thermostat": "A SpaceheatNode representing a thermostat.",
 "HubitatTelemetryReader": "A generic actor for reading telemetry data from a Hubitat Home Automation Hub LAN API. More Info: https://drive.google.com/drive/u/0/folders/1AqAU_lC2phzuI9XRYvogiIYA7GXNtlr6",
 "HubitatTankModule": "The actor for running a GridWorks TankModule, comprised of two Z-Wave Fibaro temp sensors built together inside a small container that has 4 thermistors attached. These are designed to be installed from top (1) to bottom (4) on a stratified thermal storage tank. More Info: https://drive.google.com/drive/u/0/folders/1GSxDd8Naf1GKK_fSOgQU933M1UcJ4r8q",
 "HubitatPoller": "An actor for representing a somewhat generic ShNode (like a thermostat) that can be polled through the Hubitat."
 },
 "default_value": "NoActor"
}

spaceheat.telemetry.name.001

{
 "gtr_asl": "001",
 "enum_name": "spaceheat.telemetry.name",
 "enum_version": "001",
 "description": "Specifies the name of sensed data reported by a Spaceheat SCADA",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/telemetry-name.html",
 "ssot": "https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#spaceheattelemetryname",
 "values": [
 "Unknown",
 "PowerW",
 "RelayState",
 "WaterTempCTimes1000",
 "WaterTempFTimes1000",
 "GpmTimes100",
 "CurrentRmsMicroAmps",
 "GallonsTimes100",
 "VoltageRmsMilliVolts",
 "MilliWattHours",
 "FrequencyMicroHz",
 "AirTempCTimes1000",
 "AirTempFTimes1000"
],
 "value_to_gt_symbol": {
 "Unknown": "00000000",
 "PowerW": "af39eec9",
 "RelayState": "5a71d4b3",
 "WaterTempCTimes1000": "c89d0ba1",
 "WaterTempFTimes1000": "793505aa",
 "GpmTimes100": "d70cce28",
 "CurrentRmsMicroAmps": "ad19e79c",
 "GallonsTimes100": "329a68c0",
 "VoltageRmsMilliVolts": "bb6fdd59",
 "MilliWattHours": "e0bb014b",
 "FrequencyMicroHz": "337b8659",
 "AirTempCTimes1000": "0f627faa",
 "AirTempFTimes1000": "4c3f8c78"
 },
 "value_to_version": {
 "Unknown": "000",
 "PowerW": "000",
 "RelayState": "000",
 "WaterTempCTimes1000": "000",
 "WaterTempFTimes1000": "000",
 "GpmTimes100": "000",
 "CurrentRmsMicroAmps": "000",
 "GallonsTimes100": "000",
 "VoltageRmsMilliVolts": "001",
 "MilliWattHours": "001",
 "FrequencyMicroHz": "001",
 "AirTempCTimes1000": "001",
 "AirTempFTimes1000": "001"
 },
 "value_descriptions": {
 "Unknown": "Default Value - unknown telemetry name.",
 "PowerW": "Power in Watts.",
 "RelayState": "An associated read must be either 0 or 1, with 0 meaning that the relay is open and current CANNOT flow and 1 meaning that the relay is closed and current CAN flow. Note in particular that this TelemetryName is NOT meant to be used to reflect whether a relay is energized or de-energized and in particular '1' means the same thing for both Normally Open and Normally Closed relays. Also, it is not meant to be used for a double-throw relay.",
 "WaterTempCTimes1000": "Water temperature, in Degrees Celcius multiplied by 1000. Example: 43200 means 43.2 deg Celcius.",
 "WaterTempFTimes1000": "Water temperature, in Degrees F multiplied by 1000. Example: 142100 means 142.1 deg Fahrenheit.",
 "GpmTimes100": "Gallons Per Minute multiplied by 100. Example: 433 means 4.33 gallons per minute.",
 "CurrentRmsMicroAmps": "Current measurement in Root Mean Square MicroAmps.",
 "GallonsTimes100": "Gallons multipled by 100. This is useful for flow meters that report cumulative gallons as their raw output. Example: 55300 means 55.3 gallons.",
 "VoltageRmsMilliVolts": "Voltage in Root Mean Square MilliVolts.",
 "MilliWattHours": "Energy in MilliWattHours.",
 "FrequencyMicroHz": "Frequency in MicroHz. Example: 59,965,332 means 59.965332 Hz.",
 "AirTempCTimes1000": "Air temperature, in Degrees Celsius multiplied by 1000. Example: 6234 means 6.234 deg Celcius.",
 "AirTempFTimes1000": "Air temperature, in Degrees F multiplied by 1000. Example: 69329 means 69.329 deg Fahrenheit."
 },
 "default_value": "Unknown"
}

Type Application Shared Language (ASL) Specifications

component.attribute.class.gt.000

{
 "gtr_asl": "001",
 "type_name": "component.attribute.class.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Component Attribute Class Gt. Authority for the attributes of the component.attribute.class.gt.000 belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data. Generally speaking, a component attribute class is meant to specify WHAT you might order from a plumbing supply store to 'get the same part.' The Component refers to something that will have a specific serial number.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). This identifier is used to associate a make/model with a specific component (i.e. the component will point to its ComponentAttributeClassId).",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Optional Mutable field to include manufacturer's model name. Note that several different models may be given the same spaceheat.make.model enum name.",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "component.attribute.class.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "ComponentAttributeClassId": "683c193a-bf83-4491-a294-c0e32865a407",
 "DisplayName": "Axeman Pressurized 150 Gallon Water Tank",
 "TypeName": "component.attribute.class.gt",
 "Version": "000"
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

component.gt.000

{
 "gtr_asl": "001",
 "type_name": "component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Component Gt. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component.html",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary identifier for components in all GridWorks registries.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for ComponentAttributeClass object articulated by the component.attribute.class.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "This is an optional, mutable field whose use is strongly encouraged. It may include information about HOW the component is used in a hardware layout. It may also include the HwUid for the component.",
 "required": false
 },
 "HwUid": {
 "type": "string",
 "description": "Usually this is determined by the inheriting class.",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "ComponentId": "780788df-9706-4299-b116-304a48838338",
 "DisplayName": "Little Orange house Axeman Tank",
 "ComponentAttributeClassId": "683c193a-bf83-4491-a294-c0e32865a407",
 "TypeName": "component.gt",
 "Version": "000"
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

data.channel.000

{
 "gtr_asl": "001",
 "type_name": "data.channel",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Data Channel. A data channel is a concept of some collection of readings that share all characteristics other than time.",
 "properties": {
 "DisplayName": {
 "type": "string",
 "description": "This display name is the handle for the data channel. It is meant to be set by the person/people who will be analyzing time series data. It is only expected to be unique within the data channels associated to a specific Terminal Asset.",
 "required": true
 },
 "AboutName": {
 "type": "string",
 "format": "SpaceheatName",
 "title": "About Name",
 "description": "The name of the SpaceheatNode whose physical quantities are getting captured.",
 "required": true
 },
 "CapturedByName": {
 "type": "string",
 "format": "SpaceheatName",
 "title": "",
 "description": "The name of the SpaceheatNode that is capturing the physical quantities (which can be AboutName but does not have to be).",
 "required": true
 },
 "TelemetryName": {
 "type": "string",
 "format": "spaceheat.telemetry.name",
 "title": "",
 "description": "The name of the physical quantity getting measured.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "data.channel",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "SpaceheatName": {
 "type": "string",
 "description": "Lowercase words separated by periods, where the word characters can be alphanumeric or a hyphen and the first word starts with an alphabet character.",
 "example": "store-hot-pipe"
 }
 }
}

egauge.io.000

{
 "gtr_asl": "001",
 "type_name": "egauge.io",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Used for an eGauge meter's component information in a hardware layout. When the component associated to a PowerMeter ShNode has MakeModel EGAUGE__4030, there is a significant amount of configuration required to specify both what is read from the eGauge (input) and what is then sent up to the SCADA (output). This type handles that information.",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/egauge-io.html",
 "properties": {
 "InputConfig": {
 "type": "egauge.register.config.000",
 "description": "This is the data available from the modbus csv map provided by eGauge for this component, for example http://egauge14875.egaug.es/6001C/settings.html for a eGauge device with ID 14875",
 "required": true
 },
 "OutputConfig": {
 "type": "telemetry.reporting.config.000",
 "description": "This is the data as the Scada proactor expects to consume it from the power meter driver proactor.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "egauge.io",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "InputConfig": {
 "Address": 9016,
 "Name": "house-panel-power",
 "Description": "change in value",
 "Type": "f32",
 "Denominator": 1,
 "Unit": "W",
 "TypeName": "egauge.register.config",
 "Version": "000"
 },
 "OutputConfig": {
 "TelemetryNameGtEnumSymbol": "af39eec9",
 "AboutNodeName": "house-panel-power",
 "ReportOnChange": true,
 "SamplePeriodS": 300,
 "Exponent": 0,
 "UnitGtEnumSymbol": "f459a9c3",
 "AsyncReportThreshold": 0.02,
 "NameplateMaxValue": 3500,
 "TypeName": "telemetry.reporting.config",
 "Version": "000"
 },
 "TypeName": "egauge.io",
 "Version": "000"
 }
}

egauge.register.config.000

{
 "gtr_asl": "001",
 "type_name": "egauge.register.config",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Used to translate eGauge's Modbus Map. This type captures the information provided by eGauge in its modbus csv map, when reading current, power, energy, voltage, frequency etc from an eGauge 4030.",
 "properties": {
 "Address": {
 "type": "integer",
 "description": "EGauge's modbus holding address. Note that the EGauge modbus map for holding address 100 will be 30100 - the '+30000' indicates it is a holding address. We use the 4-digit address after the '3'.",
 "required": true
 },
 "Name": {
 "type": "string",
 "description": "The name assigned in the EGauge's modbus map. This is configured by the user (see URL)",
 "required": true
 },
 "Description": {
 "type": "string",
 "description": "Again, assigned by the EGauge modbus map. Is usually 'change in value'",
 "required": true
 },
 "Type": {
 "type": "string",
 "description": "EGauge's numerical data type. Typically our power measurements are f32 (32-bit floating-point number). The serial number & firmware are t16 (which work to treat as 16-bit unsigned integer) and timestamps are u32 (32-bit unsigned integer).",
 "required": true
 },
 "Denominator": {
 "type": "integer",
 "description": "Some of the modbus registers divide by 3.60E+06 (cumulative energy registers typically). For the power, current, voltage and phase angle the denominator is 1.",
 "required": true
 },
 "Unit": {
 "type": "string",
 "description": "The EGauge unit - typically A, Hz, or W.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "egauge.register.config",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "Address": 9016,
 "Name": "house-panel-power",
 "Description": "change in value",
 "Type": "f32",
 "Denominator": 1,
 "Unit": "W",
 "TypeName": "egauge.register.config",
 "Version": "000"
 }
}

electric.meter.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "electric.meter.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Electric Meter ComponentAttributeClasses. GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "MakeModel": {
 "type": "string",
 "format": "spaceheat.make.model",
 "title": "MakeModel",
 "description": "The brand name identifier for the electric meter (what you would specify in order to buy one).",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: EGauge 4030",
 "required": false
 },
 "TelemetryNameList": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "format": "spaceheat.telemetry.name",
 "title": "TelemetryNames read by this power meter",
 "required": true
 },
 "PollPeriodMs": {
 "type": "integer",
 "description": "Poll Period refers to the period of time between two readings by the local actor. This is in contrast to Capture Period, which refers to the period between readings that are sent up to the cloud (or otherwise saved for the long-term).",
 "required": true
 },
 "Interface": {
 "type": "string",
 "format": "local.comm.interface",
 "title": "",
 "required": true
 },
 "DefaultBaud": {
 "type": "integer",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "electric.meter.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "ComponentAttributeClassId": "739a6e32-bb9c-43bc-a28d-fb61be665522",
 "DisplayName": "EGauge 4030",
 "InterfaceGtEnumSymbol": "c1e7a955",
 "MakeModelGtEnumSymbol": "beb6d3fb",
 "PollPeriodMs": 1000,
 "TelemetryNameList": ["af39eec9"],
 "TypeName": "electric.meter.cac.gt",
 "Version": "000"
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "PositiveInteger": {
 "type": "string",
 "description": "Must be positive when interpreted as an integer. Interpretation as an integer follows the pydantic rules for this - which will round down rational numbers. So 1.7 will be interpreted as 1 and is also fine, while 0.5 is interpreted as 0 and will raise an exception.",
 "example": ""
 }
 }
}

electric.meter.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "electric.meter.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Electric Meter Components. Designed for specific instances of Electric Meters. It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/electric-meters.html",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary GridWorks identifier for a specific physical instance of an ElectricMeter, and also as a more generic Component.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for ElectricMeterCac object articulated by the electric.meter.cac.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: Oak EGauge6074",
 "required": false
 },
 "ConfigList": {
 "type": "array",
 "items": {
 "type": "telemetry.reporting.config.000"
 },
 "description": "This power meter will produce multiple data channels. Each data channel measures a certain quantities (like power, current) for certain ShNodes (like a boost element or heat pump).",
 "required": true
 },
 "HwUid": {
 "type": "string",
 "description": "For eGauge, use what comes back over modbus address 100.",
 "required": false
 },
 "ModbusHost": {
 "type": "string",
 "required": false
 },
 "ModbusPort": {
 "type": "integer",
 "format": "NonNegativeInteger",
 "title": "",
 "required": false
 },
 "EgaugeIoList": {
 "type": "array",
 "items": {
 "type": "egauge.io.000"
 },
 "description": "This should be empty unless the MakeModel of the corresponding component attribute class is EGauge 4030. The channels that can be read from an EGauge 4030 are configurable by the person who installs the device. The information is encapsulated in a modbus map provided by eGauge as a csv from a device-specific API. The EGaugeIoList maps the data from this map to the data that the SCADA expects to see.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "electric.meter.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Modbus consistency",
 "description": "ModbusHost is None if and only if ModbusPort is None"
 },
 "Axiom2": {
 "title": "Egauge4030 consistency",
 "description": "If the EgaugeIoList has non-zero length, then the ModbusHost is not None and the set of output configs is equal to ConfigList as a set"
 }
 },
 "example": {
 "ComponentAttributeClassId": "739a6e32-bb9c-43bc-a28d-fb61be665522",
 "ComponentId": "36a31af8-5ff6-4105-a751-fb858889bc60",
 "DisplayName": "Oak EGauge6074",
 "HwUid": "BP01954",
 "ModbusHost": "eGauge6074.local",
 "ModbusPort": 502,
 "ConfigList": [
 {
 "AboutNodeName": "a.m.house.panel.power",
 "AsyncReportThreshold": 0.02,
 "Exponent": 0,
 "NameplateMaxValue": 3500,
 "ReportOnChange": true,
 "SamplePeriodS": 300,
 "TelemetryNameGtEnumSymbol": "af39eec9",
 "TypeName": "telemetry.reporting.config",
 "UnitGtEnumSymbol": "f459a9c3",
 "Version": "000"
 },
 {
 "AboutNodeName": "oilpluspumpspower",
 "AsyncReportThreshold": 0.02,
 "Exponent": 0,
 "NameplateMaxValue": 1000,
 "ReportOnChange": true,
 "SamplePeriodS": 300,
 "TelemetryNameGtEnumSymbol": "af39eec9",
 "TypeName": "telemetry.reporting.config",
 "UnitGtEnumSymbol": "f459a9c3",
 "Version": "000"
 }
],
 "EgaugeIoList": [
 {
 "InputConfig": {
 "Address": 9016,
 "Denominator": 1,
 "Description": "change in value",
 "Name": "house-panel-power",
 "Type": "f32",
 "TypeName": "egauge.register.config",
 "Unit": "W",
 "Version": "000"
 },
 "OutputConfig": {
 "AboutNodeName": "a.m.house.panel.power",
 "AsyncReportThreshold": 0.02,
 "Exponent": 0,
 "NameplateMaxValue": 3500,
 "ReportOnChange": true,
 "SamplePeriodS": 300,
 "TelemetryNameGtEnumSymbol": "af39eec9",
 "TypeName": "telemetry.reporting.config",
 "UnitGtEnumSymbol": "f459a9c3",
 "Version": "000"
 },
 "TypeName": "egauge.io",
 "Version": "000"
 },
 {
 "InputConfig": {
 "Address": 9018,
 "Denominator": 1,
 "Description": "change in value",
 "Name": "oil-boiler-plus-pumps",
 "Type": "f32",
 "TypeName": "egauge.register.config",
 "Unit": "W",
 "Version": "000"
 },
 "OutputConfig": {
 "AboutNodeName": "oilpluspumpspower",
 "AsyncReportThreshold": 0.02,
 "Exponent": 0,
 "NameplateMaxValue": 1000,
 "ReportOnChange": true,
 "SamplePeriodS": 300,
 "TelemetryNameGtEnumSymbol": "af39eec9",
 "TypeName": "telemetry.reporting.config",
 "UnitGtEnumSymbol": "f459a9c3",
 "Version": "000"
 },
 "TypeName": "egauge.io",
 "Version": "000"
 }
],
 "TypeName": "electric.meter.component.gt",
 "Version": "000"
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "PositiveInteger": {
 "type": "string",
 "description": "Must be positive when interpreted as an integer. Interpretation as an integer follows the pydantic rules for this - which will round down rational numbers. So 1.7 will be interpreted as 1 and is also fine, while 0.5 is interpreted as 0 and will raise an exception.",
 "example": ""
 },
 "NonNegativeInteger": {
 "type": "string",
 "description": "Must be non-negative when interpreted as an integer. Interpretation as an integer follows the pydantic rules for this - which will round down rational numbers. So 0 is fine, and 1.7 will be interpreted as 1 and is also fine.",
 "example": ""
 }
 }
}

fibaro.smart.implant.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "fibaro.smart.implant.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Fibaro Make/Model. A small IoT Z-Wave device with two analog sensors, two digital outputs and a 1-wire temp sensor.",
 "url": "https://www.fibaro.com/us/products/smart-implant/",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "Model": {
 "type": "string",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: FGBS-222 v5.2",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "fibaro.smart.implant.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "ComponentAttributeClassId": "7ce0ce69-14c6-4cb7-a33f-2aeca91e0680",
 "DisplayName": "Fibaro SmartImplant FGBS-222",
 "Model": "FGBS-222 v5.2",
 "TypeName": "fibaro.smart.implant.cac.gt",
 "Version": "000"
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

fibaro.smart.implant.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "fibaro.smart.implant.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Fibaro Smart Implant. Designed for specific Fibaro Smart Implants. It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://www.fibaro.com/us/products/smart-implant/",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary GridWorks identifier for a specific physical instance of an Fibaro, and also as a more generic Component.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for FibaroSmartImplantCac object articulated by the fibaro.smart.implant.cac.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "ZWaveDSK": {
 "type": "string",
 "description": "The Z-Wave DSK (Device Specific Key) is a unique identifier associated with a Z-Wave device, used during the process of securely including the device into a Z-Wave network. It helps establish secure communication between the Z-Wave controller and the device, ensuring that only authorized devices can join the network. Unfortunately Hubitat does not currently provide a way to view the ZWave DSK of a Fibaro.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: Fibaro Smart Implant 1010 A (For Fibaro A as opposed to B for GridWorks TankModule1 with Serial Number 1010).",
 "required": false
 },
 "HwUid": {
 "type": "string",
 "description": "Use the Fibaro S2 PIN Code, which is printed on the back of each Fibaro Implant.",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "fibaro.smart.implant.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "ComponentId": "1fdd40dd-14d7-4da2-8cf8-7cf66484e385",
 "ComponentAttributeClassId": "7ce0ce69-14c6-4cb7-a33f-2aeca91e0680",
 "DisplayName": "Fibaro 1010 A",
 "ZWaveDSK": "",
 "HwUid": "20134",
 "TypeName": "fibaro.smart.implant.component.gt",
 "Version": "000"
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

gt.dispatch.boolean.110

{
 "gtr_asl": "001",
 "type_name": "gt.dispatch.boolean",
 "version": "110",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "GridWorks Type Boolean Dispatch. Boolean dispatch command designed to be sent from an AtomicTNode to a SCADA.",
 "properties": {
 "AboutNodeName": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "The Spaceheat Node getting dispatched",
 "required": true
 },
 "ToGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "GNodeAlias of the SCADA",
 "required": true
 },
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "GNodeAlias of AtomicTNode",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "GNodeInstance of the AtomicTNode",
 "required": true
 },
 "RelayState": {
 "type": "integer",
 "format": "Bit",
 "title": "Relay State (0 or 1)",
 "description": "A Relay State of `0` indicates the relay is OPEN (off). A Relay State of `1` indicates the relay is CLOSED (on). Note that `0` means the relay is open whether or not the relay is normally open or normally closed (For a normally open relay, the relay is ENERGIZED when it is in state `0` and DE-ENERGIZED when it is in state `1`.)",
 "required": true
 },
 "SendTimeUnixMs": {
 "type": "integer",
 "format": "ReasonableUnixTimeMs",
 "title": "Time the AtomicTNode sends the dispatch, by its clock",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.dispatch.boolean",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "110",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "Bit": {
 "type": "string",
 "description": "The value must be the integer 0 or the integer 1. Will not attempt to first interpret as an integer. For example, 1.3 will not be interpreted as 1 but will raise an error.",
 "example": ""
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

gt.dispatch.boolean.local.110

{
 "gtr_asl": "001",
 "type_name": "gt.dispatch.boolean.local",
 "version": "110",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Dispatch message sent locally by SCADA HomeAlone actor. By Locally, this means sent without access to Internet. The HomeAlone actor must reside within the Local Area Network of the SCADA - typically it should reside on the same hardware.",
 "properties": {
 "RelayState": {
 "type": "integer",
 "format": "Bit",
 "title": "Relay State (0 or 1)",
 "description": "A Relay State of `0` indicates the relay is OPEN (off). A Relay State of `1` indicates the relay is CLOSED (on). Note that `0` means the relay is open whether or not the relay is normally open or normally closed (For a normally open relay, the relay is ENERGIZED when it is in state `0` and DE-ENERGIZED when it is in state `1`.)",
 "required": true
 },
 "AboutNodeName": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "About Node Name",
 "description": "The boolean actuator Spaceheat Node getting turned on or off.",
 "required": true
 },
 "FromNodeName": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "From Node Name",
 "description": "The Spaceheat Node sending the command.",
 "required": true
 },
 "SendTimeUnixMs": {
 "type": "integer",
 "format": "ReasonableUnixTimeMs",
 "title": "Send Time in Unix Milliseconds",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.dispatch.boolean.local",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "110",
 "required": true
 }
 },
 "formats": {
 "Bit": {
 "type": "string",
 "description": "The value must be the integer 0 or the integer 1. Will not attempt to first interpret as an integer. For example, 1.3 will not be interpreted as 1 but will raise an error.",
 "example": ""
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

gt.driver.booleanactuator.cmd.100

{
 "gtr_asl": "001",
 "type_name": "gt.driver.booleanactuator.cmd",
 "version": "100",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Boolean Actuator Driver Command. The boolean actuator actor reports when it has sent an actuation command to its driver so that the SCADA can add this to information to be sent up to the AtomicTNode.",
 "url": "https://gridworks.readthedocs.io/en/latest/relay-state.html",
 "properties": {
 "RelayState": {
 "type": "integer",
 "format": "Bit",
 "title": "",
 "required": true
 },
 "ShNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "CommandTimeUnixMs": {
 "type": "integer",
 "format": "ReasonableUnixTimeMs",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.driver.booleanactuator.cmd",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "100",
 "required": true
 }
 },
 "formats": {
 "Bit": {
 "type": "string",
 "description": "The value must be the integer 0 or the integer 1. Will not attempt to first interpret as an integer. For example, 1.3 will not be interpreted as 1 but will raise an error.",
 "example": ""
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

gt.sh.booleanactuator.cmd.status.100

{
 "gtr_asl": "001",
 "type_name": "gt.sh.booleanactuator.cmd.status",
 "version": "100",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Boolean Actuator Driver Command Status Package. This is a subtype of the status message sent from a SCADA to its AtomicTNode. It contains a list of all the commands that a particular boolean actuator actor has reported as sending as actuation commands to its driver in the last transmission period (typically 5 minutes).",
 "url": "https://gridworks.readthedocs.io/en/latest/relay-state.html",
 "properties": {
 "ShNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "SpaceheatNodeAlias",
 "description": "The alias of the spaceheat node that is getting actuated. For example, `a.elt1.relay` would likely indicate the relay for a resistive element.",
 "required": true
 },
 "RelayStateCommandList": {
 "type": "array",
 "items": {
 "type": "integer"
 },
 "required": true
 },
 "CommandTimeUnixMsList": {
 "type": "array",
 "items": {
 "type": "integer"
 },
 "format": "ReasonableUnixTimeMs",
 "title": "List of Command Times",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.sh.booleanactuator.cmd.status",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "100",
 "required": true
 }
 },
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

gt.sh.cli.atn.cmd.110

{
 "gtr_asl": "001",
 "type_name": "gt.sh.cli.atn.cmd",
 "version": "110",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "AtomicTNode CLI Command. This is a generic type mechanism for a crude command line interface on a SCADA, brokered by the AtomicTNode.",
 "properties": {
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "GNodeAlias",
 "description": "Must be the SCADA's AtomicTNode.",
 "required": true
 },
 "SendSnapshot": {
 "type": "boolean",
 "description": "Asks SCADA to send back a snapshot. For this version of the type, nothing would happen if SendSnapshot were set to False. However, we include this in case additional variations are added later.",
 "required": true
 },
 "FromGNodeId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "GNodeId",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.sh.cli.atn.cmd",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "110",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 }
}

gt.sh.multipurpose.telemetry.status.100

{
 "gtr_asl": "001",
 "type_name": "gt.sh.multipurpose.telemetry.status",
 "version": "100",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Data read from a MultipurposeSensor run by a Spaceheat SCADA. A list of readings about a specific SpaceheatNode made by a MultipurposeSensor node, for a Spaceheat SCADA. Designed as part of a status message sent from the SCADA to its AtomicTNode typically once every 5 minutes. The nth element of each of its two lists refer to the same reading (i.e. what the value is, when it was read).",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/multipurpose-sensor.html",
 "properties": {
 "AboutNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "AboutNodeAlias",
 "description": "The SpaceheatNode representing the physical object that the sensor reading is collecting data about. For example, a multipurpose temp sensor that reads 12 temperatures would have data for 12 different AboutNodeAliases, including say `a.tank1.temp1` for a temp sensor at the top of a water tank.",
 "required": true
 },
 "SensorNodeAlias": {
 "type": "string",
 "description": "The alias of the SpaceheatNode representing the telemetry device",
 "required": true
 },
 "TelemetryName": {
 "type": "string",
 "format": "spaceheat.telemetry.name",
 "title": "TelemetryName",
 "description": "The TelemetryName of the readings. This is used to interpet the meaning of the reading values. For example, WaterTempCTimes1000 means the reading is measuring the a reading of 37 deg C.",
 "required": true
 },
 "ValueList": {
 "type": "array",
 "items": {
 "type": "integer"
 },
 "description": "The values of the readings.",
 "required": true
 },
 "ReadTimeUnixMsList": {
 "type": "array",
 "items": {
 "type": "integer"
 },
 "format": "ReasonableUnixTimeMs",
 "title": "List of Read Times",
 "description": "The times that the MultipurposeSensor took the readings, in unix milliseconds",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.sh.multipurpose.telemetry.status",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "100",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "ListLengthConsistency",
 "description": "ValueList and ReadTimeUnixMsList must have the same length."
 }
 },
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

gt.sh.simple.telemetry.status.100

{
 "gtr_asl": "001",
 "type_name": "gt.sh.simple.telemetry.status",
 "version": "100",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Data read from a SimpleSensor run by a SpaceHeat SCADA. A list of readings from a simple sensor for a Spaceheat SCADA. Designed as part of a status message sent from the SCADA to its AtomicTNode typically once every 5 minutes. The nth element of each of its two lists refer to the same reading (i.e. what the value is, when it was read).",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/simple-sensor.html",
 "properties": {
 "ShNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "SpaceheatNodeAlias",
 "description": "The Alias of the SimpleSensor associated to the readings",
 "required": true
 },
 "TelemetryName": {
 "type": "string",
 "format": "spaceheat.telemetry.name",
 "title": "TelemetryName",
 "description": "The TelemetryName of the readings. This is used to interpet the meaning of the reading values. For example, WaterTempCTimes1000 means the reading is measuring the temperature of water, in Celsius multiplied by 1000. So a value of 37000 would be a reading of 37 deg C.",
 "required": true
 },
 "ValueList": {
 "type": "array",
 "items": {
 "type": "integer"
 },
 "description": "The values of the readings.",
 "required": true
 },
 "ReadTimeUnixMsList": {
 "type": "array",
 "items": {
 "type": "integer"
 },
 "format": "ReasonableUnixTimeMs",
 "title": "List of Read Times",
 "description": "The times that the SImpleSensor took the readings, in unix milliseconds",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.sh.simple.telemetry.status",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "100",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "ListLengthConsistency",
 "description": "ValueList and ReadTimeUnixMsList must have the same length."
 }
 },
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

gt.sh.status.110

{
 "gtr_asl": "001",
 "type_name": "gt.sh.status",
 "version": "110",
 "owner": "gridworks@gridworks-consulting.com",
 "description": ". Status message sent by a Spaceheat SCADA every 5 minutes",
 "properties": {
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "FromGNodeId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "AboutGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "SlotStartUnixS": {
 "type": "integer",
 "format": "ReasonableUnixTimeS",
 "title": "",
 "required": true
 },
 "ReportingPeriodS": {
 "type": "integer",
 "required": true
 },
 "SimpleTelemetryList": {
 "type": "array",
 "items": {
 "type": "gt.sh.simple.telemetry.status.100"
 },
 "required": true
 },
 "MultipurposeTelemetryList": {
 "type": "array",
 "items": {
 "type": "gt.sh.multipurpose.telemetry.status.100"
 },
 "required": true
 },
 "BooleanactuatorCmdList": {
 "type": "array",
 "items": {
 "type": "gt.sh.booleanactuator.cmd.status.100"
 },
 "required": true
 },
 "StatusUid": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.sh.status",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "110",
 "required": true
 }
 },
 "formats": {
 "ReasonableUnixTimeS": {
 "type": "string",
 "description": "Integer reflecting unix time seconds between 1970 and 3000",
 "example": ""
 },
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 }
}

gt.sh.telemetry.from.multipurpose.sensor.100

{
 "gtr_asl": "001",
 "type_name": "gt.sh.telemetry.from.multipurpose.sensor",
 "version": "100",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Data sent from a MultipurposeSensor to a Spaceheat SCADA. A set of readings made at the same time by a multipurpose sensor, sent by the MultipurposeSensor SpaceheatNode actor to its SCADA. The nth element of each of its three readings (what is getting read, what the value is, what the TelemetryNames are).",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/multipurpose-sensor.html",
 "properties": {
 "ScadaReadTimeUnixMs": {
 "type": "integer",
 "format": "ReasonableUnixTimeMs",
 "title": "ScadaReadTime in Unix MilliSeconds",
 "required": true
 },
 "AboutNodeAliasList": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "format": "LeftRightDot",
 "title": "AboutNodeAliasList",
 "description": "List of aliases of the SpaceHeat Nodes getting measured",
 "required": true
 },
 "TelemetryNameList": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "format": "spaceheat.telemetry.name",
 "title": "TelemetryNameList",
 "description": "List of the TelemetryNames. The nth name in this list indicates the TelemetryName of the nth alias in the AboutNodeAliasList.",
 "required": true
 },
 "ValueList": {
 "type": "array",
 "items": {
 "type": "integer"
 },
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.sh.telemetry.from.multipurpose.sensor",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "100",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "ListLengthConsistency",
 "description": "AboutNodeAliasList, ValueList and TelemetryNameList must all have the same length."
 }
 },
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

gt.telemetry.110

{
 "gtr_asl": "001",
 "type_name": "gt.telemetry",
 "version": "110",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Data sent from a SimpleSensor to a SCADA. This type is meant to be used by a SimpleSensor, where _what_ is doing the reading can be conflated with _what_ is being read.",
 "properties": {
 "ScadaReadTimeUnixMs": {
 "type": "integer",
 "format": "ReasonableUnixTimeMs",
 "title": "Scada Read Time in Unix Milliseconds",
 "required": true
 },
 "Value": {
 "type": "integer",
 "description": "The value of the reading.",
 "required": true
 },
 "Name": {
 "type": "string",
 "format": "spaceheat.telemetry.name",
 "title": "Name",
 "description": "The name of the Simple Sensing Spaceheat Node. This is both the AboutNodeName and FromNodeName for a data channel. The TelemetryName (and thus Units) are expected to be inferred by the Spaceheat Node. For example this is done initially in SCADA code according to whether the component of the Node is a PipeFlowSensorComponent, SimpleTempSensorComponent etc.",
 "required": true
 },
 "Exponent": {
 "type": "integer",
 "description": "Say the TelemetryName is WaterTempCTimes1000; this corresponds to units of Celsius. To match the implication in the name, the Exponent should be 3, and a Value of 65300 would indicate 65.3 deg C",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "gt.telemetry",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "110",
 "required": true
 }
 },
 "formats": {
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

heartbeat.b.001

{
 "gtr_asl": "001",
 "type_name": "heartbeat.b",
 "version": "001",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Heartbeat B. This is the Heartbeat intended to be sent between the Scada and the AtomicTNode to allow for block-chain validation of the status of their communication.",
 "url": "https://gridworks.readthedocs.io/en/latest/dispatch-contract.html",
 "properties": {
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "My GNodeAlias",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "My GNodeInstanceId",
 "required": true
 },
 "MyHex": {
 "type": "string",
 "format": "HexChar",
 "title": "Hex character getting sent",
 "required": true
 },
 "YourLastHex": {
 "type": "string",
 "format": "HexChar",
 "title": "Last hex character received from heartbeat partner.",
 "required": true
 },
 "LastReceivedTimeUnixMs": {
 "type": "integer",
 "format": "ReasonableUnixTimeMs",
 "title": "Time YourLastHex was received on my clock",
 "required": true
 },
 "SendTimeUnixMs": {
 "type": "integer",
 "format": "ReasonableUnixTimeMs",
 "title": "Time this message is made and sent on my clock",
 "required": true
 },
 "StartingOver": {
 "type": "boolean",
 "description": "(typically the AtomicTNode in an AtomicTNode / SCADA pair) wants to start the heartbeating volley over. The result is that its partner will not expect the initiator to know its last Hex.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "heartbeat.b",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "001",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "HexChar": {
 "type": "string",
 "description": "single-char string in '0123456789abcdefABCDEF'",
 "example": "d"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

hubitat.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "hubitat.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Hubitat Component Attribute Class (GridWorks Type). Hubitat is a company that makes IoT hubs. This is a type for MakeModels made by Hubitat.",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/iot-hubs.html",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: Hubitat Elevation C-7",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "hubitat.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "ComponentAttributeClassId": "62528da5-b510-4ac2-82c1-3782842eae07",
 "DisplayName": "Hubitat Elevation C-7",
 "TypeName": "hubitat.cac.gt",
 "Version": "000"
 }
}

hubitat.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "hubitat.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Hubitat Component (GridWorks Type). Designed for specific Hubitat hubs. It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/iot-hubs.html",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary GridWorks identifier for a specific physical instance of a Hubitat, and also as a more generic Component.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for HubitatCac object articulated by the hubitat.cac.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "Hubitat": {
 "type": "dictDict",
 "description": "Includes the information needed to access the MakerAPI of a Hubitat on the Local area network: Host, MakerApiID, AccessToken and MacAddress for the Hubitat.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: Oak Hubitat 81:37:82 (using the last 6 digits of the Hubitat MacId in the display name, as well as the short alias for the associated g node.)",
 "required": false
 },
 "HwUid": {
 "type": "string",
 "description": "Use the final 6 characters of the Hubitat mac address.",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "hubitat.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Hubitat.MacAddressId must have MacAddress format",
 "description": "Mac Address format is 6 pairs of double hex digits separated by colons, agnostic to caps. - e.g. '34:E1:D1:81:37:82' and '34:e1:d1:81:37:82' both satisfy this property. This works in python: MAC_REGEX = re.compile('[0-9a-f]{2}([-:]?)[0-9a-f]{2}(\\1[0-9a-f]{2}){4}$') and then bool(MAC_REGEX.match(mac_str.lower()))"
 },
 "Axiom2": {
 "title": "HwUid matches Hubitat MacAddress",
 "description": "The HwUid must exist, and it must be lower alphanumeric versions of the last 6 digits of the Hubitat.MacAddressId with the colons taken out. For example, if the HubitatMacAddressId is '34:E1:D1:81:37:8A' then the HwUid must be '81378a'."
 }
 },
 "example": {
 "ComponentAttributeClassId": "62528da5-b510-4ac2-82c1-3782842eae07",
 "ComponentId": "48039704-7d45-4937-adda-0e362d13cef6",
 "DisplayName": "Oak Hubitat 81:37:82",
 "Hubitat": {
 "AccessToken": "a8232144-abe9-4eed-bcfd-8f182600b8e7",
 "Host": "hubitat-keene-oak.local",
 "MacAddress": "34:E1:D1:81:37:82",
 "MakerApiId": 2
 },
 "HwUid": "813782",
 "TypeName": "hubitat.component.gt",
 "Version": "000"
 }
}

hubitat.poller.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "hubitat.poller.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Hubitat Poller Cac (GridWorks Type). A class of devices - like a Honeywell Z-Wave T6 Thermostat - that can be polled through a Hubitat IoT hub.",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: Honeywell T6 ZWave Thermostat",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "hubitat.poller.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

hubitat.poller.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "hubitat.poller.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Hubitat Poller Component (GridWorks Types). A specific instance of a Hubitat Poller Cac (like a Honeywell T6 Thermostat) - a device that can be polled through a Hubitat IoT hub.",
 "properties": {
 "ComponentId": {
 "type": "string",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for HubitatPollerCac object articulated by the hubitat.poller.cac.gt.000 type.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: Downstairs Thermostat",
 "required": false
 },
 "HwUid": {
 "type": "string",
 "description": "Unique Hardware Identifier",
 "required": false
 },
 "Poller": {
 "type": "dictDict",
 "description": "Includes hubitat_component_id (str), device_id (int), enabled (bool), poll_period_s (int) and attributes.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "hubitat.poller.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

hubitat.tank.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "hubitat.tank.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Hubitat Tank Component Attribute Class (GridWorks Type). A class of MakeModels for GridWorks tank temp sensor modules that use Hubitat hubs as part of the data collection.",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/gridworks-tank-module-1.html",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: GridWorks TankModule1",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "hubitat.tank.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "ComponentAttributeClassId": "60ac199d-679a-49f7-9142-8ca3e6428a5f",
 "DisplayName": "GridWorks TankModule1",
 "TypeName": "hubitat.tank.cac.gt",
 "Version": "000"
 }
}

hubitat.tank.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "hubitat.tank.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Hubitat Tank Component (GridWorks Type). This is a specific instance of a GridWorks temp sensing Tank Module that uses a Hubitat to read the remote data. It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/gridworks-tank-module-1.html",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary GridWorks identifier for a specific physical instance of a GridWorks TankModule1 and also as a more generic Component.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for HubitatTankCac object articulated by the hubitat.tank.cac.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "Tank": {
 "type": "dictDict",
 "description": "The configuration information (HubitatTankSettingsGt) about the 4 analog temperature sensors for a GridWorks TankModule1.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: GridWorks TankModule <buffer> SN 1010",
 "required": false
 },
 "HwUid": {
 "type": "string",
 "description": "Use the GridWorks Serial number for GridWorks TankModule1.",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "hubitat.tank.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "ComponentAttributeClassId": "60ac199d-679a-49f7-9142-8ca3e6428a5f",
 "ComponentId": "f26d412b-3918-427c-9bb9-cb17b7f2e7e4",
 "DisplayName": "Oak Tank Module <buffer> SN 1010",
 "Tank": {
 "devices": [
 {
 "analog_input_id": 1,
 "device_id": 103,
 "enabled": true,
 "exponent": 1,
 "fibaro_component_id": "1fdd40dd-14d7-4da2-8cf8-7cf66484e385",
 "rest": null,
 "stack_depth": 1,
 "tank_label": "1010 A1 (Thermistor #1 TANK TOP)",
 "telemetry_name_gt_enum_symbol": "c89d0ba1",
 "temp_unit_gt_enum_symbol": "ec14bd47"
 },
 {
 "analog_input_id": 2,
 "device_id": 104,
 "enabled": true,
 "exponent": 1,
 "fibaro_component_id": "1fdd40dd-14d7-4da2-8cf8-7cf66484e385",
 "rest": null,
 "stack_depth": 2,
 "tank_label": "1010 A2 (Thermistor #2)",
 "telemetry_name_gt_enum_symbol": "c89d0ba1",
 "temp_unit_gt_enum_symbol": "ec14bd47"
 },
 {
 "analog_input_id": 1,
 "device_id": 24,
 "enabled": true,
 "exponent": 1,
 "fibaro_component_id": "a6241764-329d-462f-94f9-0283f707d195",
 "rest": null,
 "stack_depth": 3,
 "tank_label": "1010 B1 (Thermistor #3)",
 "telemetry_name_gt_enum_symbol": "c89d0ba1",
 "temp_unit_gt_enum_symbol": "ec14bd47"
 },
 {
 "analog_input_id": 2,
 "device_id": 25,
 "enabled": true,
 "exponent": 1,
 "fibaro_component_id": "a6241764-329d-462f-94f9-0283f707d195",
 "rest": null,
 "stack_depth": 4,
 "tank_label": "1010 B2 (Thermistor #4 TANK BOTTOM)",
 "telemetry_name_gt_enum_symbol": "c89d0ba1",
 "temp_unit_gt_enum_symbol": "ec14bd47"
 }
],
 "hubitat_component_id": "48039704-7d45-4937-adda-0e362d13cef6",
 "sensor_supply_voltage": 23.7
 },
 "TypeName": "hubitat.tank.component.gt",
 "Version": "000"
 }
}

multipurpose.sensor.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "multipurpose.sensor.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Multipuprose Sensor ComponentAttributeClasses. GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "MakeModel": {
 "type": "string",
 "format": "spaceheat.make.model",
 "title": "MakeModel",
 "description": "Meant to be enough to articulate any difference in how GridWorks code would interact with a device. Should be able to use this information to buy or build a device.",
 "required": true
 },
 "PollPeriodMs": {
 "type": "integer",
 "description": "Poll Period refers to the period of time between two readings by the local actor. This is in contrast to Capture Period, which refers to the period between readings that are sent up to the cloud (or otherwise saved for the long-term).",
 "required": true
 },
 "Exponent": {
 "type": "integer",
 "description": "Say the TelemetryName is WaterTempCTimes1000; this corresponds to units of Celsius. To match the implication in the name, the Exponent should be 3, and a Value of 65300 would indicate 65.3 deg C",
 "required": true
 },
 "TempUnit": {
 "type": "string",
 "format": "spaceheat.unit",
 "title": "Temp Unit",
 "required": true
 },
 "TelemetryNameList": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "format": "spaceheat.telemetry.name",
 "title": "",
 "required": true
 },
 "MaxThermistors": {
 "type": "integer",
 "description": "The maximum number of temperature sensors this multipurpose sensor can read.",
 "required": false
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: GridWorks TSnap1.0 as 12-channel analog temp sensor",
 "required": false
 },
 "CommsMethod": {
 "type": "string",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "multipurpose.sensor.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

multipurpose.sensor.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "multipurpose.sensor.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Multupurpose Sensor Components. This type was first designed to work with a 12-channel analog temp sensor built into the first generation GridWorks SCADA box (GSCADA 1). It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/component.html",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary GridWorks identifier for a specific physical instance of a MultipurposeSensor (perhaps only the 12-channel analog temp sensor), and also as a more generic Component.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for MultipurposeSensorCac object articulated by the multipurpose.sensor.cac.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "ChannelList": {
 "type": "array",
 "items": {
 "type": "integer"
 },
 "required": true
 },
 "ConfigList": {
 "type": "array",
 "items": {
 "type": "telemetry.reporting.config.000"
 },
 "required": true
 },
 "HwUid": {
 "type": "string",
 "required": false
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: Oak Multipurpose Temp Sensor Component <100>",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "multipurpose.sensor.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "example": {
 "ChannelList": [1, 2],
 "ComponentAttributeClassId": "432073b8-4d2b-4e36-9229-73893f33f846",
 "ComponentId": "109e0bde-2f04-4cd4-9e69-bb2732a368e2",
 "ConfigList": [
 {
 "AboutNodeName": "a.dist.swt.temp",
 "AsyncReportThreshold": 0.005,
 "Exponent": 3,
 "NameplateMaxValue": 100000,
 "ReportOnChange": true,
 "SamplePeriodS": 60,
 "TelemetryNameGtEnumSymbol": "c89d0ba1",
 "TypeName": "telemetry.reporting.config",
 "UnitGtEnumSymbol": "ec14bd47",
 "Version": "000"
 },
 {
 "AboutNodeName": "a.dist.rwt.temp",
 "AsyncReportThreshold": 0.005,
 "Exponent": 3,
 "NameplateMaxValue": 100000,
 "ReportOnChange": true,
 "SamplePeriodS": 60,
 "TelemetryNameGtEnumSymbol": "c89d0ba1",
 "TypeName": "telemetry.reporting.config",
 "UnitGtEnumSymbol": "ec14bd47",
 "Version": "000"
 }
],
 "DisplayName": "Multipurpose Temp Sensor Component <100>",
 "HwUid": "100",
 "TypeName": "multipurpose.sensor.component.gt",
 "Version": "000"
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 }
}

pipe.flow.sensor.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "pipe.flow.sensor.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Pipe Flow Sensor ComponentAttributeClasses. GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "MakeModel": {
 "type": "string",
 "format": "spaceheat.make.model",
 "title": "",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: Atlas Scientific EZO FLO i2c",
 "required": false
 },
 "CommsMethod": {
 "type": "string",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "pipe.flow.sensor.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

pipe.flow.sensor.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "pipe.flow.sensor.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Pipe Flow Sensor Components. Designed for Pipe Flow Sensors. It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/component.html",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary GridWorks identifier for a specific physical instance of a PipeFlowSensor, and also as a more generic Component.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for PipeFlowSensorCac object articulated by the pipe.flow.sensor.cac.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "I2cAddress": {
 "type": "integer",
 "required": true
 },
 "ConversionFactor": {
 "type": "number",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "description": "Sample: Pipe Flow Meter Component <dist-flow>",
 "required": false
 },
 "HwUid": {
 "type": "string",
 "required": false
 },
 "ExpectedMaxGpmTimes100": {
 "type": "integer",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "pipe.flow.sensor.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

power.watts.000

{
 "gtr_asl": "001",
 "type_name": "power.watts",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Real-time power of TerminalAsset in Watts. Used by a SCADA -> Atn or Atn -> AggregatedTNode to report real-time power of their TerminalAsset. Positive number means WITHDRAWAL from the grid - so generating electricity creates a negative number. This message is considered worse than useless to send after the first attempt, and does not require an ack. Shares the same purpose as gs.pwr, but is not designed to minimize bytes so comes in JSON format.",
 "properties": {
 "Watts": {
 "type": "integer",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "power.watts",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

relay.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "relay.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Relay ComponentAttributeClasses. GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "MakeModel": {
 "type": "string",
 "format": "spaceheat.make.model",
 "title": "",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "required": false
 },
 "TypicalResponseTimeMs": {
 "type": "integer",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "relay.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

relay.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "relay.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Relay Components. Designed for Relays. It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component.html",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary GridWorks identifier for a specific physical instance of a Relay, and also as a more generic Component.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for RelayCac object articulated by the relay.cac.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "required": false
 },
 "Gpio": {
 "type": "integer",
 "required": false
 },
 "HwUid": {
 "type": "string",
 "required": false
 },
 "NormallyOpen": {
 "type": "boolean",
 "description": "Normally open relays default in the open position, meaning that when they're not in use, there is no contact between the circuits. When power is introduced, an electromagnet pulls the first circuit into contact with the second, thereby closing the circuit and allowing power to flow through",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "relay.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

resistive.heater.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "resistive.heater.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Resistive Heater ComponentAttributeClasses. GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "MakeModel": {
 "type": "string",
 "format": "spaceheat.make.model",
 "title": "",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "required": false
 },
 "NameplateMaxPowerW": {
 "type": "integer",
 "required": true
 },
 "RatedVoltageV": {
 "type": "integer",
 "format": "PositiveInteger",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "resistive.heater.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "PositiveInteger": {
 "type": "string",
 "description": "Must be positive when interpreted as an integer. Interpretation as an integer follows the pydantic rules for this - which will round down rational numbers. So 1.7 will be interpreted as 1 and is also fine, while 0.5 is interpreted as 0 and will raise an exception.",
 "example": ""
 }
 }
}

resistive.heater.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "resistive.heater.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Resistive Heater Components. Designed for Resistive Heaters. It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component.html",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary GridWorks identifier for a specific physical instance of a ResistiveHeater, and also as a more generic Component.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for ResistiveHeaterCac object articulated by the resistive.heater.cac.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "required": false
 },
 "HwUid": {
 "type": "string",
 "required": false
 },
 "TestedMaxHotMilliOhms": {
 "type": "integer",
 "required": false
 },
 "TestedMaxColdMilliOhms": {
 "type": "integer",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "resistive.heater.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

rest.poller.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "rest.poller.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "REST Poller Cac (GridWorks Type). Type for devices that can be polled by SCADA software via a REST endpoint on the LAN. For example a HoneyWell ZWave thermostat that can queried via a IoT hub like a Hubitat C7.",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "rest.poller.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

rest.poller.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "rest.poller.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "REST Poller Component (GridWorks Type). Designed for generic REST Pollers (like Honeywell Z-Wave thermostats). It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component.html",
 "properties": {
 "TypeName": {
 "type": "string",
 "value": "rest.poller.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

simple.temp.sensor.cac.gt.000

{
 "gtr_asl": "001",
 "type_name": "simple.temp.sensor.cac.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Simple Temp Sensor ComponentAttributeClasses. GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html",
 "properties": {
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "ComponentAttributeClassId",
 "description": "Unique identifier for the device class (aka 'cac' or Component Attribute Class). Authority is maintained by the World Registry.",
 "required": true
 },
 "MakeModel": {
 "type": "string",
 "format": "spaceheat.make.model",
 "title": "",
 "required": true
 },
 "TypicalResponseTimeMs": {
 "type": "integer",
 "required": true
 },
 "Exponent": {
 "type": "integer",
 "description": "Say the TelemetryName is WaterTempCTimes1000; this corresponds to units of Celsius. To match the implication in the name, the Exponent should be 3, and a Value of 65300 would indicate 65.3 deg C",
 "required": true
 },
 "TempUnit": {
 "type": "string",
 "format": "spaceheat.unit",
 "title": "",
 "required": true
 },
 "TelemetryName": {
 "type": "string",
 "format": "spaceheat.telemetry.name",
 "title": "",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "required": false
 },
 "CommsMethod": {
 "type": "string",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "simple.temp.sensor.cac.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

simple.temp.sensor.component.gt.000

{
 "gtr_asl": "001",
 "type_name": "simple.temp.sensor.component.gt",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Type for tracking Simple Temp Sensor Components. Designed for simple temp sensors that read only one temp. It extends the component.gt.000 type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks 'BackOffice' structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass are both required and immutable. HwUid is optional but once it is set to a non-null value that is also immutable - it is meant to be an immutable identifier associated to a specific physical device, ideally one that can be read remotely by the SCADA and also by the naked eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.",
 "url": "https://g-node-registry.readthedocs.io/en/latest/component.html",
 "properties": {
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Component Id",
 "description": "Primary GridWorks identifier for a specific physical instance of a SimpleTempSensor, and also as a more generic Component.",
 "required": true
 },
 "ComponentAttributeClassId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for SimpleTempSensorCac object articulated by the simple.temp.sensor.cac.gt.000 type.",
 "description": "Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "required": false
 },
 "HwUid": {
 "type": "string",
 "required": false
 },
 "Channel": {
 "type": "integer",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "simple.temp.sensor.component.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 }
 }
}

snapshot.spaceheat.000

{
 "gtr_asl": "001",
 "type_name": "snapshot.spaceheat",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "properties": {
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "Snapshot": {
 "type": "telemetry.snapshot.spaceheat.000",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "snapshot.spaceheat",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 }
}

spaceheat.node.gt.100

{
 "gtr_asl": "001",
 "type_name": "spaceheat.node.gt",
 "version": "100",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Spaceheat Node. A SpaceheatNode, or ShNode, is an organizing principal for the SCADA software. ShNodes can represent both underlying physical objects (water tank), measurements of these objects (temperature sensing at the top of a water tank), and actors within the code (an actor measuring multiple temperatures, or an actor responsible for filtering/smoothing temperature data for the purposes of thermostatic control).",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/spaceheat-node.html",
 "properties": {
 "ShNodeId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "Alias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "ActorClass": {
 "type": "string",
 "format": "sh.actor.class",
 "title": "",
 "required": true
 },
 "Role": {
 "type": "string",
 "format": "sh.node.role",
 "title": "",
 "required": true
 },
 "DisplayName": {
 "type": "string",
 "required": false
 },
 "ComponentId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Unique identifier for Component object articulated by the component.gt.000 type.",
 "description": "Used if a Spaceheat Node is associated with a physical device.",
 "required": false
 },
 "ReportingSamplePeriodS": {
 "type": "integer",
 "required": false
 },
 "RatedVoltageV": {
 "type": "integer",
 "format": "PositiveInteger",
 "title": "",
 "required": false
 },
 "TypicalVoltageV": {
 "type": "integer",
 "format": "PositiveInteger",
 "title": "",
 "required": false
 },
 "InPowerMetering": {
 "type": "boolean",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "spaceheat.node.gt",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "100",
 "required": true
 }
 },
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "PositiveInteger": {
 "type": "string",
 "description": "Must be positive when interpreted as an integer. Interpretation as an integer follows the pydantic rules for this - which will round down rational numbers. So 1.7 will be interpreted as 1 and is also fine, while 0.5 is interpreted as 0 and will raise an exception.",
 "example": ""
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 }
}

ta.data.channels.000

{
 "gtr_asl": "001",
 "type_name": "ta.data.channels",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Terminal Asset Data Channels. A list of data channels associated to a specific Terminal Asset.",
 "properties": {
 "TerminalAssetGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "GNodeAlias for the Terminal Asset",
 "description": "The Alias of the Terminal Asset about which the time series data is providing information.",
 "required": true
 },
 "TerminalAssetGNodeId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "GNodeId for the Terminal Asset",
 "description": "The immutable unique identifier for the Terminal Asset.",
 "required": true
 },
 "TimeUnixS": {
 "type": "integer",
 "format": "ReasonableUnixTimeS",
 "title": "TimeUnixS",
 "description": "The time that this list of data channels was created",
 "required": true
 },
 "Author": {
 "type": "string",
 "description": "Author of this list of data channels.",
 "required": true
 },
 "Channels": {
 "type": "array",
 "items": {
 "type": "data.channel.000"
 },
 "required": true
 },
 "Identifier": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "Identifier",
 "description": "Unique identifier for a specific instance of this type that can be used to establish how time series csv's were constructed.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "ta.data.channels",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "formats": {
 "ReasonableUnixTimeS": {
 "type": "string",
 "description": "Integer reflecting unix time seconds between 1970 and 3000",
 "example": ""
 },
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 }
}

telemetry.reporting.config.000

{
 "gtr_asl": "001",
 "type_name": "telemetry.reporting.config",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "properties": {
 "TelemetryName": {
 "type": "string",
 "format": "spaceheat.telemetry.name",
 "title": "",
 "required": true
 },
 "AboutNodeName": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "description": "The name of the SpaceheatNode whose physical quantity is getting captured.",
 "required": true
 },
 "ReportOnChange": {
 "type": "boolean",
 "required": true
 },
 "SamplePeriodS": {
 "type": "integer",
 "required": true
 },
 "Exponent": {
 "type": "integer",
 "description": "Say the TelemetryName is WaterTempCTimes1000; this corresponds to units of Celsius. To match the implication in the name, the Exponent should be 3, and a Value of 65300 would indicate 65.3 deg C",
 "required": true
 },
 "Unit": {
 "type": "string",
 "format": "spaceheat.unit",
 "title": "",
 "required": true
 },
 "AsyncReportThreshold": {
 "type": "number",
 "required": false
 },
 "NameplateMaxValue": {
 "type": "integer",
 "format": "PositiveInteger",
 "title": "",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "telemetry.reporting.config",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Async reporting consistency",
 "description": "If AsyncReportThreshold exists, so does NameplateMaxValue"
 }
 },
 "example": {
 "TelemetryNameGtEnumSymbol": "af39eec9",
 "AboutNodeName": "house-panel-power",
 "ReportOnChange": true,
 "SamplePeriodS": 300,
 "Exponent": 0,
 "UnitGtEnumSymbol": "f459a9c3",
 "AsyncReportThreshold": 0.02,
 "NameplateMaxValue": 3500,
 "TypeName": "telemetry.reporting.config",
 "Version": "000"
 },
 "formats": {
 "PositiveInteger": {
 "type": "string",
 "description": "Must be positive when interpreted as an integer. Interpretation as an integer follows the pydantic rules for this - which will round down rational numbers. So 1.7 will be interpreted as 1 and is also fine, while 0.5 is interpreted as 0 and will raise an exception.",
 "example": ""
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 }
}

telemetry.snapshot.spaceheat.000

{
 "gtr_asl": "001",
 "type_name": "telemetry.snapshot.spaceheat",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Snapshot of Telemetry Data from a SpaceHeat SCADA. A snapshot of all current sensed states, sent from a spaceheat SCADA to its AtomicTNode. The nth element of each of the three lists refer to the same reading (i.e., what is getting read, what the value is, what the TelemetryNames are.)",
 "url": "https://gridworks-protocol.readthedocs.io/en/latest/spaceheat-node.html",
 "properties": {
 "ReportTimeUnixMs": {
 "type": "integer",
 "format": "ReasonableUnixTimeMs",
 "title": "ReportTimeUnixMs",
 "description": "The time, in unix ms, that the SCADA creates this type. It may not be when the SCADA sends the type to the atn (for example if Internet is down).",
 "required": true
 },
 "AboutNodeAliasList": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "format": "LeftRightDot",
 "title": "AboutNodeAliases",
 "description": "The list of Spaceheat nodes in the snapshot.",
 "required": true
 },
 "ValueList": {
 "type": "array",
 "items": {
 "type": "integer"
 },
 "required": true
 },
 "TelemetryNameList": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "format": "spaceheat.telemetry.name",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "telemetry.snapshot.spaceheat",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "ListLengthConsistency",
 "description": "AboutNodeAliastList, ValueList and TelemetryNameList must all have the same length."
 }
 },
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, with the most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "ReasonableUnixTimeMs": {
 "type": "string",
 "description": "An integer reflecting unix time in MILLISECONDS between midnight Jan 1 2000 and midnight Jan 1 3000 UTC",
 "example": "1702327940710"
 }
 }
}

Gwproto Enums

GridWorks Enums used in gwproto, the Application Shared Language (ASL) used by SCADA
devices and AtomicTNodes to communicate with each other. These enums play a specific structural
role as semantic “glue” within ASLs.

	Key attributes:
	
	Enum values are translated into “GridWorks Type Enum Symbols” (GtEnumSymbols) when embedded

in a serialized type sent as a message from one Application and/or Actor to another.
- Each Enum has a unique name in the type registry (like spaceheat.telemetry.name), along
with a version (like 001).
- That name are interpretted locally in the SDK and do not necessarily carry the larger
context of the unique type registry name (for example gwproto uses TelemetryName, since
the spaceheat context goes without saying).
- Each Value/Symbol pair also has a version. Value/Symbol pairs cannot be changed or removed.
The only adjustments that can be made to an enum are adding more Value/Symbols. This is to
support forwards- and backwards- compatability in GridWorks Types that use these enums.

If Enums are “glue”, then GridWorks Types are the building blocks of SALs. Every SAL is comprised
of a set of shared GridWorks Types.

Application Shared Languages are an evolution of the concept of Application Programming Interfaces.
In a nutshell, an API can be viewed as a rather restricted version of an SAL, where only one application
has anything complex/interesting to say and, in general, the developers/owners of that application
have sole responsibility for managing the versioning and changing of that API. Note also that SALs
do not make any a priori assumption about the relationship (i.e. the default client/server for an API)
or the message delivery mechanism (i.e. via default GET/POST to RESTful URLs). For more information
on these ideas:

	[GridWorks Enums](https://gridwork-type-registry.readthedocs.io/en/latest/types.html)

	[GridWorks Types](https://gridwork-type-registry.readthedocs.io/en/latest/types.html)

	[ASLs](https://gridwork-type-registry.readthedocs.io/en/latest/asls.html)

	
class gwproto.enums.ActorClass(value)

	Determines the code running Spaceheat Nodes supervised by Spaceheat SCADA software

Enum sh.actor.class version 001 in the GridWorks Type registry.

Used by used by multiple Application Shared Languages (ASLs), including but not limited to
gwproto. For more information:

	[ASLs](https://gridworks-type-registry.readthedocs.io/en/latest/)

	[Global Authority](https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#shactorclass)

	[More Info](https://gridworks-protocol.readthedocs.io/en/latest/actor-class.html)

	Values (with symbols in parens):
	
	NoActor (00000000): A SpaceheatNode that does not have any code running on its behalf within
the SCADA, but is instead only a reference object (for example, a tank of hot water
or a resistive element) that can be discussed (for example, the power drawn by the resistive
element can be measured) or evaluated (for example, a set of 5 different temperatures
in different places on the tank can be used to estimate total thermal energy in the
tank).

	Scada (6d37aa41): The SCADA actor is the prime piece of code running and supervising other
ProActors within the SCADA code. It is also responsible for managing the state of TalkingWith
the AtomicTNode, as well maintaining and reporting a boolean state variable that indicates
whether it is following dispatch commands from the AtomicTNode XOR following dispatch
commands from its own HomeAlone actor.

	HomeAlone (32d3d19f): HomeAlone is an abstract Spaceheat Actor responsible for dispatching
the SCADA when it is not talking with the AtomicTNode.

	BooleanActuator (fddd0064): A SpaceheatNode representing a generic boolean actuator capable
of turning on (closing a circuit) or turning off (opening a circuit).

	PowerMeter (2ea112b9): A SpaceheatNode representing the power meter that is used to settle
financial transactions with the TerminalAsset. That is, this is the power meter whose
accuracy is certified in the creation of the TerminalAsset GNode via creation of the
TaDeed. [More Info](https://gridworks.readthedocs.io/en/latest/terminal-asset.html).

	Atn (b103058f): A SpaceheatNode representing the AtomicTNode. Note that the code running
the AtomicTNode is not local within the SCADA code, except for a stub used for testing
purposes. [More Info](https://gridworks.readthedocs.io/en/latest/atomic-t-node.html).

	SimpleSensor (dae4b2f0): A SpaceheatNode representing a sensor that measures a single category
of quantity (for example, temperature) for a single object (for example, on a pipe). [More Info](https://gridworks-protocol.readthedocs.io/en/latest/simple-sensor.html).

	MultipurposeSensor (7c483ad0): A sensor that either reads multiple kinds of readings from
the same sensing device (for example reads current and voltage), reads multiple different
objects (temperature from two different thermisters) or both. [More Info](https://gridworks-protocol.readthedocs.io/en/latest/multipurpose-sensor.html).

	Thermostat (4a9c1785): A SpaceheatNode representing a thermostat.

	HubitatTelemetryReader (0401b27e): A generic actor for reading telemetry data from a Hubitat
Home Automation Hub LAN API. [More Info](https://drive.google.com/drive/u/0/folders/1AqAU_lC2phzuI9XRYvogiIYA7GXNtlr6).

	HubitatTankModule (e2877329): The actor for running a GridWorks TankModule, comprised of
two Z-Wave Fibaro temp sensors built together inside a small container that has 4 thermistors
attached. These are designed to be installed from top (1) to bottom (4) on a stratified
thermal storage tank. [More Info](https://drive.google.com/drive/u/0/folders/1GSxDd8Naf1GKK_fSOgQU933M1UcJ4r8q).

	HubitatPoller (00000100): An actor for representing a somewhat generic ShNode (like a thermostat)
that can be polled through the Hubitat.

	Hubitat: (0000101): An actor for representing a Hubitat for receiving Hubitat events over HTTP.

	HoneywellThermostat: (0000102): An actor for representing a Honeywell Hubitat thermostat which
can load thermostat heating state change messages into status reports.

	
classmethod default()

	Returns default value (in this case NoActor)

	Return type:

	ActorClass

	
classmethod enum_name()

	The name in the GridWorks Type Registry (sh.actor.class)

	Return type:

	str

	
classmethod enum_version()

	The version in the GridWorks Type Registry (001)

	Return type:

	str

	
classmethod symbol_to_value(symbol)

	Given the symbol sent in a serialized message, returns the encoded enum.

	Parameters:

	symbol (str) – The candidate symbol.

	Returns:

	The encoded value associated to that symbol. If the symbol is not
recognized - which could happen if the actor making the symbol is using
a later version of this enum, returns the default value of “NoActor”.

	Return type:

	str

	
classmethod symbols()

	Returns a list of the enum symbols

	Return type:

	List[str]

	
classmethod value_to_symbol(value)

	Provides the encoding symbol for a ActorClass enum to send in seriliazed messages.

	Parameters:

	value (str) – The candidate value.

	Returns:

	The symbol encoding that value. If the value is not recognized -
which could happen if the actor making the message used a later version
of this enum than the actor decoding the message, returns the default
symbol of “00000000”.

	Return type:

	str

	
classmethod values()

	Returns enum choices

	Return type:

	List[str]

	
classmethod version(value)

	Returns the version of an enum value.

Once a value belongs to one version of the enum, it belongs
to all future versions.

	Parameters:

	value (str) – The candidate enum value.

	Raises:

	ValueError – If value is not one of the enum values.

	Returns:

	The earliest version of the enum containing value.

	Return type:

	str

	
class gwproto.enums.LocalCommInterface(value)

	Categorization of in-house comm mechanisms for SCADA

Enum local.comm.interface version 000 in the GridWorks Type registry.

Used by used by multiple Application Shared Languages (ASLs), including but not limited to
gwproto. For more information:

	[ASLs](https://gridworks-type-registry.readthedocs.io/en/latest/)

	[Global Authority](https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#localcomminterface)

	Values (with symbols in parens):
	
	Unknown (00000000)

	I2C (9ec8bc49)

	Ethernet (c1e7a955)

	OneWire (ae2d4cd8)

	RS485 (a6a4ac9f)

	SimRabbit (efc144cd)

	Wifi (46ac6589)

	Analog_4_20_mA (653c73b8)

	RS232 (0843a726)

	
classmethod default()

	Returns default value (in this case UNKNOWN)

	Return type:

	LocalCommInterface

	
classmethod enum_name()

	The name in the GridWorks Type Registry (local.comm.interface)

	Return type:

	str

	
classmethod enum_version()

	The version in the GridWorks Type Registry (000)

	Return type:

	str

	
classmethod symbol_to_value(symbol)

	Given the symbol sent in a serialized message, returns the encoded enum.

	Parameters:

	symbol (str) – The candidate symbol.

	Returns:

	The encoded value associated to that symbol. If the symbol is not
recognized - which could happen if the actor making the symbol is using
a later version of this enum, returns the default value of “Unknown”.

	Return type:

	str

	
classmethod symbols()

	Returns a list of the enum symbols

	Return type:

	List[str]

	
classmethod value_to_symbol(value)

	Provides the encoding symbol for a LocalCommInterface enum to send in seriliazed messages.

	Parameters:

	value (str) – The candidate value.

	Returns:

	The symbol encoding that value. If the value is not recognized -
which could happen if the actor making the message used a later version
of this enum than the actor decoding the message, returns the default
symbol of “00000000”.

	Return type:

	str

	
classmethod values()

	Returns enum choices

	Return type:

	List[str]

	
classmethod version(value)

	Returns the version of an enum value.

Once a value belongs to one version of the enum, it belongs
to all future versions.

	Parameters:

	value (str) – The candidate enum value.

	Raises:

	ValueError – If value is not one of the enum values.

	Returns:

	The earliest version of the enum containing value.

	Return type:

	str

	
class gwproto.enums.MakeModel(value)

	Determines Make/Model of device associated to a Spaceheat Node supervised by SCADA

Enum spaceheat.make.model version 001 in the GridWorks Type registry.

Used by used by multiple Application Shared Languages (ASLs), including but not limited to
gwproto. For more information:

	[ASLs](https://gridworks-type-registry.readthedocs.io/en/latest/)

	[Global Authority](https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#spaceheatmakemodel)

	[More Info](https://gridworks-protocol.readthedocs.io/en/latest/make-model.html)

	Values (with symbols in parens):
	
	UnknownMake__UnknownModel (00000000)

	Egauge__4030 (beb6d3fb): A power meter in Egauge’s 403x line. [More Info](https://drive.google.com/drive/u/0/folders/1abJ-o9tlTscsQpMvT6SHxIm5j5aODgfA).

	NCD__PR8-14-SPST (fabfa505): NCD’s 4-channel high-power relay controller + 4 GPIO with I2C
interface. [More Info](https://store.ncd.io/product/4-channel-high-power-relay-controller-4-gpio-with-i2c-interface/?attribute_pa_choose-a-relay=20-amp-spdt).

	Adafruit__642 (acd93fb3): Adafruit’s high-temp, water-proof 1-wire temp sensor. [More Info](https://www.adafruit.com/product/642).

	GridWorks__TSnap1 (d0178dc3): Actual GridWorks TSnap 1.0 SCADA Box.

	GridWorks__WaterTempHighPrecision (f8b497e8): Simulated temp sensor.

	Gridworks__SimPm1 (076da322): Simulated power meter.

	SchneiderElectric__Iem3455 (d300635e): Schneider Electric IEM 344 utility meter.

	GridWorks__SimBool30AmpRelay (e81d74a8): Simulated relay.

	OpenEnergy__EmonPi (c75d269f): Open Energy’s open source multipurpose sensing device (including
internal power meter). [More Info](https://docs.openenergymonitor.org/emonpi/technical.html).

	GridWorks__SimTSnap1 (3042c432): Simulated SCADA Box.

	Atlas__EzFlo (d0b0e375): Atlas Scientific EZO Embedded Flow Meter Totalizer, pulse to I2C. [More Info](https://drive.google.com/drive/u/0/folders/142bBV1pQIbMpyIR_0iRUr5gnzWgknOJp).

	Hubitat__C7__LAN1 (4d649420): This refers to a Hubitat C7 that has been configured in a specific
way with respect to the APIs it presents on the Local Area Network. The Hubitat C7 is
a home automation hub that supports building ZigBee and ZWave meshes, plugs into Ethernet,
has a reasonable user interface and has an active community of open-source developers
who create drivers and package managers for devices, and supports the creation of various
types of APIs on the Local Area Network. [More Info](https://drive.google.com/drive/folders/1AqAU_lC2phzuI9XRYvogiIYA7GXNtlr6).

	GridWorks__Tank_Module_1 (bd759051): This refers to a small module designed and assembled
by GridWorks that is meant to be mounted to the side of a hot water tank. It requires
24V DC and has 4 temperature sensors coming out of it labeled 1, 2, 3 and 4. It is meant
to provide temperature readings (taken within a half a second of each other) of all
4 of its sensors once a minute. [More Info](https://drive.google.com/drive/folders/1GSxDd8Naf1GKK_fSOgQU933M1UcJ4r8q).

	Fibaro__Analog_Temp_Sensor (1f19839d): This enum refers to a Fibaro FGBS-222 home automation
device that has been configured in a specific way. This includes (1) being attached
to two 10K NTC thermistors and a specific voltage divider circuit that specifies its
temperature as a function of voltage and (2) one of its potential free outputs being
in-line with the power of a partner Fibaro, so that it can power cycle its partner (because
there are reports of Fibaros no longer reporting temp change after weeks or months until
power cylced). The Fibaro itself is a tiny (29 X 18 X 13 mm) Z-Wave device powered on
9-30V DC that can read up to 6 1-wire DS18B20 temp sensors, 2 0-10V analog inputs and
also has 2 potential free outputs. [More Info](https://drive.google.com/drive/u/0/folders/1Muhsvw00goppHIfGSEmreX4hM6V78b-m).

	Amphenol__NTC_10K_Thermistor_MA100GG103BN (46f21cd5): A small gauge, low-cost, rapid response
NTC 10K Thermistor designed for medical applications. [More Info](https://drive.google.com/drive/u/0/folders/11HW4ov66UvxKAwqApW6IrtoXatZBLQkd).

	YHDC__SCT013-100 (08da3f7d): YHDC current transformer [More Info](https://en.yhdc.com/product/SCT013-401.html).

	Magnelab__SCT-0300-050 (a8d9a70d): Magnelab 50A current transformer

	GridWorks__MultiTemp1 (bb31d136): GridWorks Analog temperature sensor that has 12 channels
(labeled 1-12) to read 12 10K NTC Thermistors. It is comprised of 3 NCD ADS 1115 I2C
temperature sensors with I2C Addresses 0x4b, 0x48, 0x49. [More Info](https://drive.google.com/drive/u/0/folders/1OuY0tunaad2Ie4Id3zFB7FcbEwHizWuL).

	Krida__Emr16-I2c-V3 (3353ce46): 16-Channel I2C Low Voltage Electromagnetic Relay Board [More Info](https://drive.google.com/drive/u/0/folders/1jL82MTRKEh9DDmxJFQ2yU2cjqnVD9Ik7).

	
classmethod default()

	Returns default value (in this case UNKNOWNMAKE__UNKNOWNMODEL)

	Return type:

	MakeModel

	
classmethod enum_name()

	The name in the GridWorks Type Registry (spaceheat.make.model)

	Return type:

	str

	
classmethod enum_version()

	The version in the GridWorks Type Registry (001)

	Return type:

	str

	
classmethod symbol_to_value(symbol)

	Given the symbol sent in a serialized message, returns the encoded enum.

	Parameters:

	symbol (str) – The candidate symbol.

	Returns:

	The encoded value associated to that symbol. If the symbol is not
recognized - which could happen if the actor making the symbol is using
a later version of this enum, returns the default value of “UnknownMake__UnknownModel”.

	Return type:

	str

	
classmethod symbols()

	Returns a list of the enum symbols

	Return type:

	List[str]

	
classmethod value_to_symbol(value)

	Provides the encoding symbol for a MakeModel enum to send in seriliazed messages.

	Parameters:

	value (str) – The candidate value.

	Returns:

	The symbol encoding that value. If the value is not recognized -
which could happen if the actor making the message used a later version
of this enum than the actor decoding the message, returns the default
symbol of “00000000”.

	Return type:

	str

	
classmethod values()

	Returns enum choices

	Return type:

	List[str]

	
classmethod version(value)

	Returns the version of an enum value.

Once a value belongs to one version of the enum, it belongs
to all future versions.

	Parameters:

	value (str) – The candidate enum value.

	Raises:

	ValueError – If value is not one of the enum values.

	Returns:

	The earliest version of the enum containing value.

	Return type:

	str

	
class gwproto.enums.Role(value)

	Categorizes SpaceheatNodes by their function within the heating system

Enum sh.node.role version 000 in the GridWorks Type registry.

Used by used by multiple Application Shared Languages (ASLs), including but not limited to
gwproto. For more information:

	[ASLs](https://gridworks-type-registry.readthedocs.io/en/latest/)

	[Global Authority](https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#shnoderole)

	[More Info](https://gridworks-protocol.readthedocs.io/en/latest/spaceheat-node-role.html)

	Values (with symbols in parens):
	
	Unknown (00000000): Unknown Role

	Scada (d0afb424): Primary SCADA

	HomeAlone (863e50d1): HomeAlone GNode

	Atn (6ddff83b): AtomicTNode

	PowerMeter (9ac68b6e): A SpaceheatNode representing the power meter that is used to settle
financial transactions with the TerminalAsset. That is, this is the power meter whose
accuracy is certified in the creation of the TerminalAsset GNode via creation of the
TaDeed. [More Info](https://gridworks.readthedocs.io/en/latest/terminal-asset.html).

	BoostElement (99c5f326): Resistive element used for providing heat to a thermal store.

	BooleanActuator (57b788ee): A solid state or mechanical relay with two states (open, closed)

	DedicatedThermalStore (3ecfe9b8): A dedicated thermal store within a thermal storage heating
system - could be one or more water tanks, phase change material, etc.

	TankWaterTempSensor (73308a1f): A temperature sensor used for measuring temperature inside
or on the immediate outside of a water tank.

	PipeTempSensor (c480f612): A temperature sensor used for measuring the temperature of a tank.
Typically curved metal thermistor with thermal grease for good contact.

	RoomTempSensor (fec74958): A temperature sensor used for measuring room temperature, or temp
in a heated space more generally.

	OutdoorTempSensor (5938bf1f): A temperature sensor used for measuring outdoor temperature.

	PipeFlowMeter (ece3b600): A meter that measures flow of liquid through a pipe, in units of
VOLUME/TIME

	HeatedSpace (65725f44): A Heated Space.

	HydronicPipe (fe3cbdd5): A pipe carrying techinical water or other fluid (e.g. glycol) in
a heating system.

	BaseboardRadiator (05fdd645): A baseboard radiator - one kind of emitter in a hydronic heating
system.

	RadiatorFan (6896109b): A fan that can amplify the power out of a radiator.

	CirculatorPump (b0eaf2ba): Circulator pump for one or more of the hydronic pipe loops

	MultiChannelAnalogTempSensor (661d7e73): An analog multi channel temperature sensor

	Outdoors (dd975b31): The outdoors

	
classmethod default()

	Returns default value (in this case Unknown)

	Return type:

	Role

	
classmethod enum_name()

	The name in the GridWorks Type Registry (sh.node.role)

	Return type:

	str

	
classmethod enum_version()

	The version in the GridWorks Type Registry (000)

	Return type:

	str

	
classmethod symbol_to_value(symbol)

	Given the symbol sent in a serialized message, returns the encoded enum.

	Parameters:

	symbol (str) – The candidate symbol.

	Returns:

	The encoded value associated to that symbol. If the symbol is not
recognized - which could happen if the actor making the symbol is using
a later version of this enum, returns the default value of “Unknown”.

	Return type:

	str

	
classmethod symbols()

	Returns a list of the enum symbols

	Return type:

	List[str]

	
classmethod value_to_symbol(value)

	Provides the encoding symbol for a Role enum to send in seriliazed messages.

	Parameters:

	value (str) – The candidate value.

	Returns:

	The symbol encoding that value. If the value is not recognized -
which could happen if the actor making the message used a later version
of this enum than the actor decoding the message, returns the default
symbol of “00000000”.

	Return type:

	str

	
classmethod values()

	Returns enum choices

	Return type:

	List[str]

	
classmethod version(value)

	Returns the version of an enum value.

Once a value belongs to one version of the enum, it belongs
to all future versions.

	Parameters:

	value (str) – The candidate enum value.

	Raises:

	ValueError – If value is not one of the enum values.

	Returns:

	The earliest version of the enum containing value.

	Return type:

	str

	
class gwproto.enums.TelemetryName(value)

	Specifies the name of sensed data reported by a Spaceheat SCADA

Enum spaceheat.telemetry.name version 001 in the GridWorks Type registry.

Used by used by multiple Application Shared Languages (ASLs), including but not limited to
gwproto. For more information:

	[ASLs](https://gridworks-type-registry.readthedocs.io/en/latest/)

	[Global Authority](https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#spaceheattelemetryname)

	[More Info](https://gridworks-protocol.readthedocs.io/en/latest/telemetry-name.html)

	Values (with symbols in parens):
	
	Unknown (00000000): Default Value - unknown telemetry name.

	PowerW (af39eec9): Power in Watts.

	RelayState (5a71d4b3): An associated read must be either 0 or 1, with 0 meaning that the
relay is open and current CANNOT flow and 1 meaning that the relay is closed and current
CAN flow. Note in particular that this TelemetryName is NOT meant to be used to reflect
whether a relay is energized or de-energized and in particular ‘1’ means the same thing
for both Normally Open and Normally Closed relays. Also, it is not meant to be used
for a double-throw relay.

	WaterTempCTimes1000 (c89d0ba1): Water temperature, in Degrees Celcius multiplied by 1000.
Example: 43200 means 43.2 deg Celcius.

	WaterTempFTimes1000 (793505aa): Water temperature, in Degrees F multiplied by 1000. Example:
142100 means 142.1 deg Fahrenheit.

	GpmTimes100 (d70cce28): Gallons Per Minute multiplied by 100. Example: 433 means 4.33 gallons
per minute.

	CurrentRmsMicroAmps (ad19e79c): Current measurement in Root Mean Square MicroAmps.

	GallonsTimes100 (329a68c0): Gallons multipled by 100. This is useful for flow meters that
report cumulative gallons as their raw output. Example: 55300 means 55.3 gallons.

	VoltageRmsMilliVolts (bb6fdd59): Voltage in Root Mean Square MilliVolts.

	MilliWattHours (e0bb014b): Energy in MilliWattHours.

	FrequencyMicroHz (337b8659): Frequency in MicroHz. Example: 59,965,332 means 59.965332 Hz.

	AirTempCTimes1000 (0f627faa): Air temperature, in Degrees Celsius multiplied by 1000. Example:
6234 means 6.234 deg Celcius.

	AirTempFTimes1000 (4c3f8c78): Air temperature, in Degrees F multiplied by 1000. Example:
69329 means 69.329 deg Fahrenheit.

	ThermostatState (00002000): An enum representing the state of the thermostat heat call.

	
classmethod default()

	Returns default value (in this case Unknown)

	Return type:

	TelemetryName

	
classmethod enum_name()

	The name in the GridWorks Type Registry (spaceheat.telemetry.name)

	Return type:

	str

	
classmethod enum_version()

	The version in the GridWorks Type Registry (001)

	Return type:

	str

	
classmethod symbol_to_value(symbol)

	Given the symbol sent in a serialized message, returns the encoded enum.

	Parameters:

	symbol (str) – The candidate symbol.

	Returns:

	The encoded value associated to that symbol. If the symbol is not
recognized - which could happen if the actor making the symbol is using
a later version of this enum, returns the default value of “Unknown”.

	Return type:

	str

	
classmethod symbols()

	Returns a list of the enum symbols

	Return type:

	List[str]

	
classmethod value_to_symbol(value)

	Provides the encoding symbol for a TelemetryName enum to send in seriliazed messages.

	Parameters:

	value (str) – The candidate value.

	Returns:

	The symbol encoding that value. If the value is not recognized -
which could happen if the actor making the message used a later version
of this enum than the actor decoding the message, returns the default
symbol of “00000000”.

	Return type:

	str

	
classmethod values()

	Returns enum choices

	Return type:

	List[str]

	
classmethod version(value)

	Returns the version of an enum value.

Once a value belongs to one version of the enum, it belongs
to all future versions.

	Parameters:

	value (str) – The candidate enum value.

	Raises:

	ValueError – If value is not one of the enum values.

	Returns:

	The earliest version of the enum containing value.

	Return type:

	str

	
class gwproto.enums.Unit(value)

	Specifies the physical unit of sensed data reported by SCADA

Enum spaceheat.unit version 000 in the GridWorks Type registry.

Used by used by multiple Application Shared Languages (ASLs), including but not limited to
gwproto. For more information:

	[ASLs](https://gridworks-type-registry.readthedocs.io/en/latest/)

	[Global Authority](https://gridworks-type-registry.readthedocs.io/en/latest/enums.html#spaceheatunit)

	Values (with symbols in parens):
	
	Unknown (00000000)

	Unitless (ec972387)

	W (f459a9c3)

	Celcius (ec14bd47)

	Fahrenheit (7d8832f8)

	Gpm (b4580361)

	WattHours (d66f1622)

	AmpsRms (a969ac7c)

	VoltsRms (e5d7555c)

	Gallons (8e123a26)

	ThermostatStateEnum (00003000)

	
classmethod default()

	Returns default value (in this case Unknown)

	Return type:

	Unit

	
classmethod enum_name()

	The name in the GridWorks Type Registry (spaceheat.unit)

	Return type:

	str

	
classmethod enum_version()

	The version in the GridWorks Type Registry (000)

	Return type:

	str

	
classmethod symbol_to_value(symbol)

	Given the symbol sent in a serialized message, returns the encoded enum.

	Parameters:

	symbol (str) – The candidate symbol.

	Returns:

	The encoded value associated to that symbol. If the symbol is not
recognized - which could happen if the actor making the symbol is using
a later version of this enum, returns the default value of “Unknown”.

	Return type:

	str

	
classmethod symbols()

	Returns a list of the enum symbols

	Return type:

	List[str]

	
classmethod value_to_symbol(value)

	Provides the encoding symbol for a Unit enum to send in seriliazed messages.

	Parameters:

	value (str) – The candidate value.

	Returns:

	The symbol encoding that value. If the value is not recognized -
which could happen if the actor making the message used a later version
of this enum than the actor decoding the message, returns the default
symbol of “00000000”.

	Return type:

	str

	
classmethod values()

	Returns enum choices

	Return type:

	List[str]

	
classmethod version(value)

	Returns the version of an enum value.

Once a value belongs to one version of the enum, it belongs
to all future versions.

	Parameters:

	value (str) – The candidate enum value.

	Raises:

	ValueError – If value is not one of the enum values.

	Returns:

	The earliest version of the enum containing value.

	Return type:

	str

SDK for gridworks-protocol [https://pypi.org/project/gridworks-protocol/] Types

The Python classes enumerated below provide an interpretation of gridworks-protocol
type instances (serialized JSON) as Python objects. Types are the building
blocks for all GridWorks APIs. You can read more about how they work
here [https://gridworks.readthedocs.io/en/latest/api-sdk-abi.html], and
examine their API specifications here.
The Python classes below also come with methods for translating back and
forth between type instances and Python objects.

List of all the types

TYPE SDKS

	 ComponentAttributeClassGt

	 ComponentGt

	 DataChannel

	 EgaugeIo

	 EgaugeRegisterConfig

	 ElectricMeterCacGt

	 ElectricMeterComponentGt

	 FibaroSmartImplantCacGt

	 FibaroSmartImplantComponentGt

	 GtDispatchBoolean

	 GtDispatchBooleanLocal

	 GtDriverBooleanactuatorCmd

	 GtShBooleanactuatorCmdStatus

	 GtShCliAtnCmd

	 GtShMultipurposeTelemetryStatus

	 GtShSimpleTelemetryStatus

	 GtShStatus

	 GtShTelemetryFromMultipurposeSensor

	 GtTelemetry

	 HeartbeatB

	 HubitatCacGt

	 HubitatComponentGt

	 HubitatPollerCacGt

	 HubitatPollerComponentGt

	 HubitatTankCacGt

	 HubitatTankComponentGt

	 MultipurposeSensorCacGt

	 MultipurposeSensorComponentGt

	 PipeFlowSensorCacGt

	 PipeFlowSensorComponentGt

	 PowerWatts

	 RelayCacGt

	 RelayComponentGt

	 ResistiveHeaterCacGt

	 ResistiveHeaterComponentGt

	 RestPollerCacGt

	 RestPollerComponentGt

	 SimpleTempSensorCacGt

	 SimpleTempSensorComponentGt

	 SnapshotSpaceheat

	 SpaceheatNodeGt

	 TaDataChannels

	 TelemetryReportingConfig

	 TelemetrySnapshotSpaceheat

ComponentAttributeClassGt

Python pydantic class corresponding to json type component.attribute.class.gt, version 000.

	
class gwproto.types.ComponentAttributeClassGt(*, ComponentAttributeClassId, DisplayName=None, TypeName='component.attribute.class.gt', Version='000')

	Component Attribute Class Gt.

Authority for the attributes of the component.attribute.class.gt.000 belongs to the WorldRegistry.
The WorldRegistry is part of the GridWorks ‘BackOffice’ structure for managing relational
device data. Generally speaking, a component attribute class is meant to specify WHAT you
might order from a plumbing supply store to ‘get the same part.’ The Component refers to
something that will have a specific serial number.

[More info](https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html)

	Parameters:

	
	ComponentAttributeClassId (str)

	DisplayName (str | None)

	TypeName (Literal['component.attribute.class.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
component.attribute.class.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
component.attribute.class.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the component.attribute.class.gt.000 representation.

Instances in the class are python-native representations of component.attribute.class.gt.000
objects, while the actual component.attribute.class.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is ComponentAttributeClassGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). This identifier is used to associate a make/model with a specific component (i.e. the component will point to its ComponentAttributeClassId).

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description: DisplayName. Optional Mutable field to include manufacturer’s model name. Note that several different models may be given the same spaceheat.make.model enum name.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.component_attribute_class_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.ComponentAttributeClassGt_Maker(component_attribute_class_id, display_name)

	
	Parameters:

	
	component_attribute_class_id (str)

	display_name (str | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a component.attribute.class.gt.000 message object
into a ComponentAttributeClassGt python object for internal use.

	This is the near-inverse of the ComponentAttributeClassGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a ComponentAttributeClassGt object.

	Returns:

	ComponentAttributeClassGt

	Return type:

	ComponentAttributeClassGt

	
classmethod tuple_to_type(tuple_)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tuple_ (ComponentAttributeClassGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	ComponentAttributeClassGt

ComponentGt

Python pydantic class corresponding to json type component.gt, version 000.

	
class gwproto.types.ComponentGt(*, ComponentId, ComponentAttributeClassId, DisplayName=None, HwUid=None, TypeName='component.gt', Version='000')

	Component Gt.

Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId,
DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks
‘BackOffice’ structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass
are both required and immutable. HwUid is optional but once it is set to a non-null value
that is also immutable - it is meant to be an immutable identifier associated to a specific
physical device, ideally one that can be read remotely by the SCADA and also by the naked
eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.

[More info](https://g-node-registry.readthedocs.io/en/latest/component.html)

	Parameters:

	
	ComponentId (str)

	ComponentAttributeClassId (str)

	DisplayName (str | None)

	HwUid (str | None)

	TypeName (Literal['component.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
component.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
component.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the component.gt.000 representation.

Instances in the class are python-native representations of component.gt.000
objects, while the actual component.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is ComponentGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentId:
	
	Description: Component Id. Primary identifier for components in all GridWorks registries.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description: This is an optional, mutable field whose use is strongly encouraged. It may include information about HOW the component is used in a hardware layout. It may also include the HwUid for the component.

	HwUid:
	
	Description: Usually this is determined by the inheriting class.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.component_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.ComponentGt_Maker(component_id, component_attribute_class_id, display_name, hw_uid)

	
	Parameters:

	
	component_id (str)

	component_attribute_class_id (str)

	display_name (str | None)

	hw_uid (str | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a component.gt.000 message object
into a ComponentGt python object for internal use.

	This is the near-inverse of the ComponentGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a ComponentGt object.

	Returns:

	ComponentGt

	Return type:

	ComponentGt

	
classmethod tuple_to_type(tuple_)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tuple_ (ComponentGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	ComponentGt

DataChannel

Python pydantic class corresponding to json type data.channel, version 000.

	
class gwproto.types.DataChannel(*, DisplayName, AboutName, CapturedByName, TelemetryName, TypeName='data.channel', Version='000')

	Data Channel.

A data channel is a concept of some collection of readings that share all characteristics
other than time.

	Parameters:

	
	DisplayName (str)

	AboutName (str)

	CapturedByName (str)

	TelemetryName (TelemetryName)

	TypeName (Literal['data.channel'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
data.channel.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
data.channel.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the data.channel.000 representation.

Instances in the class are python-native representations of data.channel.000
objects, while the actual data.channel.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is DataChannel.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	DisplayName:
	
	Description: Display Name. This display name is the handle for the data channel. It is meant to be set by the person/people who will be analyzing time series data. It is only expected to be unique within the data channels associated to a specific Terminal Asset.

	AboutName:
	
	Description: About Name. The name of the SpaceheatNode whose physical quantities are getting captured.

	Format: SpaceheatName

	CapturedByName:
	
	Description: The name of the SpaceheatNode that is capturing the physical quantities (which can be AboutName but does not have to be).

	Format: SpaceheatName

	TelemetryName:
	
	Description: The name of the physical quantity getting measured.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.data_channel.check_is_spaceheat_name(v)

	Check SpaceheatName Format.

Validates if the provided string adheres to the SpaceheatName format:
Lowercase words separated by periods, where word characters can be alphanumeric
or a hyphen, and the first word starts with an alphabet character.

	Parameters:

	v (str) – The string to be validated.

	Raises:

	ValueError – If the provided string is not in SpaceheatName format.

	
class gwproto.types.DataChannel_Maker(display_name, about_name, captured_by_name, telemetry_name)

	
	Parameters:

	
	display_name (str)

	about_name (str)

	captured_by_name (str)

	telemetry_name (TelemetryName)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a data.channel.000 message object
into a DataChannel python object for internal use.

	This is the near-inverse of the DataChannel.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a DataChannel object.

	Returns:

	DataChannel

	Return type:

	DataChannel

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (DataChannel)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	DataChannel

EgaugeIo

Python pydantic class corresponding to json type egauge.io, version 000.

	
class gwproto.types.EgaugeIo(*, InputConfig, OutputConfig, TypeName='egauge.io', Version='000')

	Used for an eGauge meter’s component information in a hardware layout.

When the component associated to a PowerMeter ShNode has MakeModel EGAUGE__4030, there is
a significant amount of configuration required to specify both what is read from the eGauge
(input) and what is then sent up to the SCADA (output). This type handles that information.

[More info](https://gridworks-protocol.readthedocs.io/en/latest/egauge-io.html)

	Parameters:

	
	InputConfig (EgaugeRegisterConfig)

	OutputConfig (TelemetryReportingConfig)

	TypeName (Literal['egauge.io'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
egauge.io.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
egauge.io.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the egauge.io.000 representation.

Instances in the class are python-native representations of egauge.io.000
objects, while the actual egauge.io.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is EgaugeIo.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	InputConfig:
	
	Description: Input config for one channel of data for a specific eGauge meter. This is the data available from the modbus csv map provided by eGauge for this component, for example http://egauge14875.egaug.es/6001C/settings.html for a eGauge device with ID 14875

	OutputConfig:
	
	Description: Output config for the same channel . This is the data as the Scada proactor expects to consume it from the power meter driver proactor.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.EgaugeIo_Maker(input_config, output_config)

	
	Parameters:

	
	input_config (EgaugeRegisterConfig)

	output_config (TelemetryReportingConfig)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a egauge.io.000 message object
into a EgaugeIo python object for internal use.

	This is the near-inverse of the EgaugeIo.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a EgaugeIo object.

	Returns:

	EgaugeIo

	Return type:

	EgaugeIo

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (EgaugeIo)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	EgaugeIo

EgaugeRegisterConfig

Python pydantic class corresponding to json type egauge.register.config, version 000.

	
class gwproto.types.EgaugeRegisterConfig(*, Address, Name, Description, Type, Denominator, Unit, TypeName='egauge.register.config', Version='000')

	Used to translate eGauge’s Modbus Map.

This type captures the information provided by eGauge in its modbus csv map, when reading
current, power, energy, voltage, frequency etc from an eGauge 4030.

	Parameters:

	
	Address (int)

	Name (str)

	Description (str)

	Type (str)

	Denominator (int)

	Unit (str)

	TypeName (Literal['egauge.register.config'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
egauge.register.config.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
egauge.register.config.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the egauge.register.config.000 representation.

Instances in the class are python-native representations of egauge.register.config.000
objects, while the actual egauge.register.config.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is EgaugeRegisterConfig.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	Address:
	
	Description: Address. EGauge’s modbus holding address. Note that the EGauge modbus map for holding address 100 will be 30100 - the ‘+30000’ indicates it is a holding address. We use the 4-digit address after the ‘3’.

	Name:
	
	Description: Name. The name assigned in the EGauge’s modbus map. This is configured by the user (see URL)

	Description:
	
	Description: Description. Again, assigned by the EGauge modbus map. Is usually ‘change in value’

	Type:
	
	Description: Type. EGauge’s numerical data type. Typically our power measurements are f32 (32-bit floating-point number). The serial number & firmware are t16 (which work to treat as 16-bit unsigned integer) and timestamps are u32 (32-bit unsigned integer).

	Denominator:
	
	Description: Denominator. Some of the modbus registers divide by 3.60E+06 (cumulative energy registers typically). For the power, current, voltage and phase angle the denominator is 1.

	Unit:
	
	Description: Unit. The EGauge unit - typically A, Hz, or W.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.EgaugeRegisterConfig_Maker(address, name, description, type, denominator, unit)

	
	Parameters:

	
	address (int)

	name (str)

	description (str)

	type (str)

	denominator (int)

	unit (str)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a egauge.register.config.000 message object
into a EgaugeRegisterConfig python object for internal use.

	This is the near-inverse of the EgaugeRegisterConfig.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a EgaugeRegisterConfig object.

	Returns:

	EgaugeRegisterConfig

	Return type:

	EgaugeRegisterConfig

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (EgaugeRegisterConfig)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	EgaugeRegisterConfig

ElectricMeterCacGt

Python pydantic class corresponding to json type electric.meter.cac.gt, version 000.

	
class gwproto.types.ElectricMeterCacGt(*, ComponentAttributeClassId, MakeModel, DisplayName=None, TelemetryNameList, PollPeriodMs, Interface, DefaultBaud=None, TypeName='electric.meter.cac.gt', Version='000')

	Type for tracking Electric Meter ComponentAttributeClasses.

GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for
managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.

[More info](https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html)

	Parameters:

	
	ComponentAttributeClassId (str)

	MakeModel (MakeModel)

	DisplayName (str | None)

	TelemetryNameList (List[TelemetryName])

	PollPeriodMs (int)

	Interface (LocalCommInterface)

	DefaultBaud (int | None)

	TypeName (Literal['electric.meter.cac.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
electric.meter.cac.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
electric.meter.cac.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the electric.meter.cac.gt.000 representation.

Instances in the class are python-native representations of electric.meter.cac.gt.000
objects, while the actual electric.meter.cac.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is ElectricMeterCacGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	MakeModel:
	
	Description: MakeModel. The brand name identifier for the electric meter (what you would specify in order to buy one).

	DisplayName:
	
	Description: Sample: EGauge 4030

	TelemetryNameList:
	
	Description: TelemetryNames read by this power meter.

	PollPeriodMs:
	
	Description: Poll Period in Milliseconds. Poll Period refers to the period of time between two readings by the local actor. This is in contrast to Capture Period, which refers to the period between readings that are sent up to the cloud (or otherwise saved for the long-term).

	Interface:
	
	Description:

	DefaultBaud:
	
	Description: To be used when the comms method requires a baud rate.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.electric_meter_cac_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.electric_meter_cac_gt.check_is_positive_integer(v)

	Must be positive when interpreted as an integer. Interpretation as an
integer follows the pydantic rules for this - which will round down
rational numbers. So 1.7 will be interpreted as 1 and is also fine,
while 0.5 is interpreted as 0 and will raise an exception.

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v < 1

	
class gwproto.types.ElectricMeterCacGt_Maker(component_attribute_class_id, make_model, display_name, telemetry_name_list, poll_period_ms, interface, default_baud)

	
	Parameters:

	
	component_attribute_class_id (str)

	make_model (MakeModel)

	display_name (str | None)

	telemetry_name_list (List[TelemetryName])

	poll_period_ms (int)

	interface (LocalCommInterface)

	default_baud (int | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a electric.meter.cac.gt.000 message object
into a ElectricMeterCacGt python object for internal use.

	This is the near-inverse of the ElectricMeterCacGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a ElectricMeterCacGt object.

	Returns:

	ElectricMeterCacGt

	Return type:

	ElectricMeterCacGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (ElectricMeterCacGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	ElectricMeterCacGt

ElectricMeterComponentGt

Python pydantic class corresponding to json type electric.meter.component.gt, version 000.

	ComponentId:
	
	Description: Component Id. Primary GridWorks identifier for a specific physical instance of an ElectricMeter, and also as a more generic Component.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description: Display Name for the Power Meter. Sample: Oak EGauge6074

	ConfigList:
	
	Description: List of Data Channel configs . This power meter will produce multiple data channels. Each data channel measures a certain quantities (like power, current) for certain ShNodes (like a boost element or heat pump).

	HwUid:
	
	Description: Unique Hardware Id for the Power Meter. For eGauge, use what comes back over modbus address 100.

	ModbusHost:
	
	Description: Host on LAN when power meter is modbus over Ethernet.

	ModbusPort:
	
	Description:

	Format: NonNegativeInteger

	EgaugeIoList:
	
	Description: Bijecton from EGauge4030 input to ConfigList output. This should be empty unless the MakeModel of the corresponding component attribute class is EGauge 4030. The channels that can be read from an EGauge 4030 are configurable by the person who installs the device. The information is encapsulated in a modbus map provided by eGauge as a csv from a device-specific API. The EGaugeIoList maps the data from this map to the data that the SCADA expects to see.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.electric_meter_component_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.electric_meter_component_gt.check_is_positive_integer(v)

	Must be positive when interpreted as an integer. Interpretation as an
integer follows the pydantic rules for this - which will round down
rational numbers. So 1.7 will be interpreted as 1 and is also fine,
while 0.5 is interpreted as 0 and will raise an exception.

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v < 1

	
class gwproto.types.electric_meter_component_gt.check_is_non_negative_integer(v)

	Must be non-negative when interpreted as an integer. Interpretation
as an integer follows the pydantic rules for this - which will round
down rational numbers. So 0 is fine, and 1.7 will be interpreted as
1 and is also fine.

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v < 0

FibaroSmartImplantCacGt

Python pydantic class corresponding to json type fibaro.smart.implant.cac.gt, version 000.

	
class gwproto.types.FibaroSmartImplantCacGt(*, ComponentAttributeClassId, DisplayName=None, TypeName='fibaro.smart.implant.cac.gt', Version='000', Model='', **extra_data)

	
	Parameters:

	
	ComponentAttributeClassId (str)

	DisplayName (str | None)

	TypeName (Literal['fibaro.smart.implant.cac.gt'])

	Version (Literal['000'])

	Model (str)

	extra_data (Any)

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	Model:
	
	Description:

	DisplayName:
	
	Description: Sample: FGBS-222 v5.2

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.FibaroSmartImplantCacGt_Maker(cac)

	
	Parameters:

	cac (FibaroSmartImplantCac)

FibaroSmartImplantComponentGt

Python pydantic class corresponding to json type fibaro.smart.implant.component.gt, version 000.

	
class gwproto.types.FibaroSmartImplantComponentGt(*, ComponentId, ComponentAttributeClassId, DisplayName=None, HwUid=None, TypeName='fibaro.smart.implant.component.gt', Version='000', ZWaveDSK='')

	
	Parameters:

	
	ComponentId (str)

	ComponentAttributeClassId (str)

	DisplayName (str | None)

	HwUid (str | None)

	TypeName (Literal['fibaro.smart.implant.component.gt'])

	Version (Literal['000'])

	ZWaveDSK (str)

	ComponentId:
	
	Description: Component Id. Primary GridWorks identifier for a specific physical instance of an Fibaro, and also as a more generic Component.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	ZWaveDSK:
	
	Description: The Z-Wave DSK (Device Specific Key) is a unique identifier associated with a Z-Wave device, used during the process of securely including the device into a Z-Wave network. It helps establish secure communication between the Z-Wave controller and the device, ensuring that only authorized devices can join the network. Unfortunately Hubitat does not currently provide a way to view the ZWave DSK of a Fibaro.

	DisplayName:
	
	Description: Sample: Fibaro Smart Implant 1010 A (For Fibaro A as opposed to B for GridWorks TankModule1 with Serial Number 1010).

	HwUid:
	
	Description: Hardware Unique Id. Use the Fibaro S2 PIN Code, which is printed on the back of each Fibaro Implant.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.FibaroSmartImplantComponentGt_Maker(component)

	
	Parameters:

	component (FibaroSmartImplantComponent)

GtDispatchBoolean

Python pydantic class corresponding to json type gt.dispatch.boolean, version 110.

	
class gwproto.types.GtDispatchBoolean(*, AboutNodeName, ToGNodeAlias, FromGNodeAlias, FromGNodeInstanceId, RelayState, SendTimeUnixMs, TypeName='gt.dispatch.boolean', Version='110')

	GridWorks Type Boolean Dispatch.

Boolean dispatch command designed to be sent from an AtomicTNode to a SCADA.

	Parameters:

	
	AboutNodeName (str)

	ToGNodeAlias (str)

	FromGNodeAlias (str)

	FromGNodeInstanceId (str)

	RelayState (int)

	SendTimeUnixMs (int)

	TypeName (Literal['gt.dispatch.boolean'])

	Version (Literal['110'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.dispatch.boolean.110 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.dispatch.boolean.110 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.dispatch.boolean.110 representation.

Instances in the class are python-native representations of gt.dispatch.boolean.110
objects, while the actual gt.dispatch.boolean.110 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtDispatchBoolean.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	AboutNodeName:
	
	Description: The Spaceheat Node getting dispatched.

	Format: LeftRightDot

	ToGNodeAlias:
	
	Description: GNodeAlias of the SCADA.

	Format: LeftRightDot

	FromGNodeAlias:
	
	Description: GNodeAlias of AtomicTNode.

	Format: LeftRightDot

	FromGNodeInstanceId:
	
	Description: GNodeInstance of the AtomicTNode.

	Format: UuidCanonicalTextual

	RelayState:
	
	Description: Relay State (0 or 1). A Relay State of 0 indicates the relay is OPEN (off). A Relay State of 1 indicates the relay is CLOSED (on). Note that 0 means the relay is open whether or not the relay is normally open or normally closed (For a normally open relay, the relay is ENERGIZED when it is in state 0 and DE-ENERGIZED when it is in state 1.)

	Format: Bit

	SendTimeUnixMs:
	
	Description: Time the AtomicTNode sends the dispatch, by its clock.

	Format: ReasonableUnixTimeMs

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_dispatch_boolean.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.gt_dispatch_boolean.check_is_bit(v)

	Checks Bit format

Bit format: The value must be the integer 0 or the integer 1.

Will not attempt to first interpret as an integer. For example,
1.3 will not be interpreted as 1 but will raise an error.

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not 0 or 1

	
class gwproto.types.gt_dispatch_boolean.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.gt_dispatch_boolean.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.GtDispatchBoolean_Maker(about_node_name, to_g_node_alias, from_g_node_alias, from_g_node_instance_id, relay_state, send_time_unix_ms)

	
	Parameters:

	
	about_node_name (str)

	to_g_node_alias (str)

	from_g_node_alias (str)

	from_g_node_instance_id (str)

	relay_state (int)

	send_time_unix_ms (int)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.dispatch.boolean.110 message object
into a GtDispatchBoolean python object for internal use.

	This is the near-inverse of the GtDispatchBoolean.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtDispatchBoolean object.

	Returns:

	GtDispatchBoolean

	Return type:

	GtDispatchBoolean

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtDispatchBoolean)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtDispatchBoolean

GtDispatchBooleanLocal

Python pydantic class corresponding to json type gt.dispatch.boolean.local, version 110.

	
class gwproto.types.GtDispatchBooleanLocal(*, RelayState, AboutNodeName, FromNodeName, SendTimeUnixMs, TypeName='gt.dispatch.boolean.local', Version='110')

	Dispatch message sent locally by SCADA HomeAlone actor.

By Locally, this means sent without access to Internet. The HomeAlone actor must reside
within the Local Area Network of the SCADA - typically it should reside on the same hardware.

	Parameters:

	
	RelayState (int)

	AboutNodeName (str)

	FromNodeName (str)

	SendTimeUnixMs (int)

	TypeName (Literal['gt.dispatch.boolean.local'])

	Version (Literal['110'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.dispatch.boolean.local.110 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.dispatch.boolean.local.110 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.dispatch.boolean.local.110 representation.

Instances in the class are python-native representations of gt.dispatch.boolean.local.110
objects, while the actual gt.dispatch.boolean.local.110 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtDispatchBooleanLocal.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	RelayState:
	
	Description: Relay State (0 or 1). A Relay State of 0 indicates the relay is OPEN (off). A Relay State of 1 indicates the relay is CLOSED (on). Note that 0 means the relay is open whether or not the relay is normally open or normally closed (For a normally open relay, the relay is ENERGIZED when it is in state 0 and DE-ENERGIZED when it is in state 1.)

	Format: Bit

	AboutNodeName:
	
	Description: About Node Name. The boolean actuator Spaceheat Node getting turned on or off.

	Format: LeftRightDot

	FromNodeName:
	
	Description: From Node Name. The Spaceheat Node sending the command.

	Format: LeftRightDot

	SendTimeUnixMs:
	
	Description: Send Time in Unix Milliseconds.

	Format: ReasonableUnixTimeMs

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_dispatch_boolean_local.check_is_bit(v)

	Checks Bit format

Bit format: The value must be the integer 0 or the integer 1.

Will not attempt to first interpret as an integer. For example,
1.3 will not be interpreted as 1 but will raise an error.

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not 0 or 1

	
class gwproto.types.gt_dispatch_boolean_local.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.gt_dispatch_boolean_local.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.GtDispatchBooleanLocal_Maker(relay_state, about_node_name, from_node_name, send_time_unix_ms)

	
	Parameters:

	
	relay_state (int)

	about_node_name (str)

	from_node_name (str)

	send_time_unix_ms (int)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.dispatch.boolean.local.110 message object
into a GtDispatchBooleanLocal python object for internal use.

	This is the near-inverse of the GtDispatchBooleanLocal.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtDispatchBooleanLocal object.

	Returns:

	GtDispatchBooleanLocal

	Return type:

	GtDispatchBooleanLocal

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtDispatchBooleanLocal)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtDispatchBooleanLocal

GtDriverBooleanactuatorCmd

Python pydantic class corresponding to json type gt.driver.booleanactuator.cmd, version 100.

	
class gwproto.types.GtDriverBooleanactuatorCmd(*, RelayState, ShNodeAlias, CommandTimeUnixMs, TypeName='gt.driver.booleanactuator.cmd', Version='100')

	Boolean Actuator Driver Command.

The boolean actuator actor reports when it has sent an actuation command to its driver so
that the SCADA can add this to information to be sent up to the AtomicTNode.

[More info](https://gridworks.readthedocs.io/en/latest/relay-state.html)

	Parameters:

	
	RelayState (int)

	ShNodeAlias (str)

	CommandTimeUnixMs (int)

	TypeName (Literal['gt.driver.booleanactuator.cmd'])

	Version (Literal['100'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.driver.booleanactuator.cmd.100 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.driver.booleanactuator.cmd.100 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.driver.booleanactuator.cmd.100 representation.

Instances in the class are python-native representations of gt.driver.booleanactuator.cmd.100
objects, while the actual gt.driver.booleanactuator.cmd.100 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtDriverBooleanactuatorCmd.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	RelayState:
	
	Description:

	Format: Bit

	ShNodeAlias:
	
	Description:

	Format: LeftRightDot

	CommandTimeUnixMs:
	
	Description:

	Format: ReasonableUnixTimeMs

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_driver_booleanactuator_cmd.check_is_bit(v)

	Checks Bit format

Bit format: The value must be the integer 0 or the integer 1.

Will not attempt to first interpret as an integer. For example,
1.3 will not be interpreted as 1 but will raise an error.

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not 0 or 1

	
class gwproto.types.gt_driver_booleanactuator_cmd.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.gt_driver_booleanactuator_cmd.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.GtDriverBooleanactuatorCmd_Maker(relay_state, sh_node_alias, command_time_unix_ms)

	
	Parameters:

	
	relay_state (int)

	sh_node_alias (str)

	command_time_unix_ms (int)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.driver.booleanactuator.cmd.100 message object
into a GtDriverBooleanactuatorCmd python object for internal use.

	This is the near-inverse of the GtDriverBooleanactuatorCmd.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtDriverBooleanactuatorCmd object.

	Returns:

	GtDriverBooleanactuatorCmd

	Return type:

	GtDriverBooleanactuatorCmd

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtDriverBooleanactuatorCmd)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtDriverBooleanactuatorCmd

GtShBooleanactuatorCmdStatus

Python pydantic class corresponding to json type gt.sh.booleanactuator.cmd.status, version 100.

	
class gwproto.types.GtShBooleanactuatorCmdStatus(*, ShNodeAlias, RelayStateCommandList, CommandTimeUnixMsList, TypeName='gt.sh.booleanactuator.cmd.status', Version='100')

	Boolean Actuator Driver Command Status Package.

This is a subtype of the status message sent from a SCADA to its AtomicTNode. It contains
a list of all the commands that a particular boolean actuator actor has reported as sending
as actuation commands to its driver in the last transmission period (typically 5 minutes).

[More info](https://gridworks.readthedocs.io/en/latest/relay-state.html)

	Parameters:

	
	ShNodeAlias (str)

	RelayStateCommandList (List[int])

	CommandTimeUnixMsList (List[int])

	TypeName (Literal['gt.sh.booleanactuator.cmd.status'])

	Version (Literal['100'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.sh.booleanactuator.cmd.status.100 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.sh.booleanactuator.cmd.status.100 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.sh.booleanactuator.cmd.status.100 representation.

Instances in the class are python-native representations of gt.sh.booleanactuator.cmd.status.100
objects, while the actual gt.sh.booleanactuator.cmd.status.100 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtShBooleanactuatorCmdStatus.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ShNodeAlias:
	
	Description: SpaceheatNodeAlias. The alias of the spaceheat node that is getting actuated. For example, a.elt1.relay would likely indicate the relay for a resistive element.

	Format: LeftRightDot

	RelayStateCommandList:
	
	Description: List of RelayStateCommands.

	CommandTimeUnixMsList:
	
	Description: List of Command Times.

	Format: ReasonableUnixTimeMs

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_sh_booleanactuator_cmd_status.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.gt_sh_booleanactuator_cmd_status.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.GtShBooleanactuatorCmdStatus_Maker(sh_node_alias, relay_state_command_list, command_time_unix_ms_list)

	
	Parameters:

	
	sh_node_alias (str)

	relay_state_command_list (List[int])

	command_time_unix_ms_list (List[int])

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.sh.booleanactuator.cmd.status.100 message object
into a GtShBooleanactuatorCmdStatus python object for internal use.

	This is the near-inverse of the GtShBooleanactuatorCmdStatus.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtShBooleanactuatorCmdStatus object.

	Returns:

	GtShBooleanactuatorCmdStatus

	Return type:

	GtShBooleanactuatorCmdStatus

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtShBooleanactuatorCmdStatus)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtShBooleanactuatorCmdStatus

GtShCliAtnCmd

Python pydantic class corresponding to json type gt.sh.cli.atn.cmd, version 110.

	
class gwproto.types.GtShCliAtnCmd(*, FromGNodeAlias, SendSnapshot, FromGNodeId, TypeName='gt.sh.cli.atn.cmd', Version='110')

	AtomicTNode CLI Command.

This is a generic type mechanism for a crude command line interface on a SCADA, brokered
by the AtomicTNode.

	Parameters:

	
	FromGNodeAlias (str)

	SendSnapshot (bool)

	FromGNodeId (str)

	TypeName (Literal['gt.sh.cli.atn.cmd'])

	Version (Literal['110'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.sh.cli.atn.cmd.110 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.sh.cli.atn.cmd.110 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.sh.cli.atn.cmd.110 representation.

Instances in the class are python-native representations of gt.sh.cli.atn.cmd.110
objects, while the actual gt.sh.cli.atn.cmd.110 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtShCliAtnCmd.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	FromGNodeAlias:
	
	Description: GNodeAlias. Must be the SCADA’s AtomicTNode.

	Format: LeftRightDot

	SendSnapshot:
	
	Description: Send Snapshot. Asks SCADA to send back a snapshot. For this version of the type, nothing would happen if SendSnapshot were set to False. However, we include this in case additional variations are added later.

	FromGNodeId:
	
	Description: GNodeId.

	Format: UuidCanonicalTextual

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_sh_cli_atn_cmd.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.gt_sh_cli_atn_cmd.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.GtShCliAtnCmd_Maker(from_g_node_alias, send_snapshot, from_g_node_id)

	
	Parameters:

	
	from_g_node_alias (str)

	send_snapshot (bool)

	from_g_node_id (str)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.sh.cli.atn.cmd.110 message object
into a GtShCliAtnCmd python object for internal use.

	This is the near-inverse of the GtShCliAtnCmd.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtShCliAtnCmd object.

	Returns:

	GtShCliAtnCmd

	Return type:

	GtShCliAtnCmd

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtShCliAtnCmd)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtShCliAtnCmd

GtShMultipurposeTelemetryStatus

Python pydantic class corresponding to json type gt.sh.multipurpose.telemetry.status, version 100.

	
class gwproto.types.GtShMultipurposeTelemetryStatus(*, AboutNodeAlias, SensorNodeAlias, TelemetryName, ValueList, ReadTimeUnixMsList, TypeName='gt.sh.multipurpose.telemetry.status', Version='100')

	Data read from a MultipurposeSensor run by a Spaceheat SCADA.

A list of readings about a specific SpaceheatNode made by a MultipurposeSensor node, for
a Spaceheat SCADA. Designed as part of a status message sent from the SCADA to its AtomicTNode
typically once every 5 minutes. The nth element of each of its two lists refer to the same
reading (i.e. what the value is, when it was read).

[More info](https://gridworks-protocol.readthedocs.io/en/latest/multipurpose-sensor.html)

	Parameters:

	
	AboutNodeAlias (str)

	SensorNodeAlias (str)

	TelemetryName (TelemetryName)

	ValueList (List[int])

	ReadTimeUnixMsList (List[int])

	TypeName (Literal['gt.sh.multipurpose.telemetry.status'])

	Version (Literal['100'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.sh.multipurpose.telemetry.status.100 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.sh.multipurpose.telemetry.status.100 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.sh.multipurpose.telemetry.status.100 representation.

Instances in the class are python-native representations of gt.sh.multipurpose.telemetry.status.100
objects, while the actual gt.sh.multipurpose.telemetry.status.100 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtShMultipurposeTelemetryStatus.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	
classmethod check_axiom_1(v)

	Axiom 1: ListLengthConsistency.
ValueList and ReadTimeUnixMsList must have the same length.

	Parameters:

	v (dict)

	Return type:

	dict

	AboutNodeAlias:
	
	Description: AboutNodeAlias. The SpaceheatNode representing the physical object that the sensor reading is collecting data about. For example, a multipurpose temp sensor that reads 12 temperatures would have data for 12 different AboutNodeAliases, including say a.tank1.temp1 for a temp sensor at the top of a water tank.

	Format: LeftRightDot

	SensorNodeAlias:
	
	Description: SensorNodeAlias. The alias of the SpaceheatNode representing the telemetry device

	TelemetryName:
	
	Description: TelemetryName. The TelemetryName of the readings. This is used to interpet the meaning of the reading values. For example, WaterTempCTimes1000 means the reading is measuring the a reading of 37 deg C.

	ValueList:
	
	Description: List of Values. The values of the readings.

	ReadTimeUnixMsList:
	
	Description: List of Read Times. The times that the MultipurposeSensor took the readings, in unix milliseconds

	Format: ReasonableUnixTimeMs

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_sh_multipurpose_telemetry_status.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.gt_sh_multipurpose_telemetry_status.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.GtShMultipurposeTelemetryStatus_Maker(about_node_alias, sensor_node_alias, telemetry_name, value_list, read_time_unix_ms_list)

	
	Parameters:

	
	about_node_alias (str)

	sensor_node_alias (str)

	telemetry_name (TelemetryName)

	value_list (List[int])

	read_time_unix_ms_list (List[int])

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.sh.multipurpose.telemetry.status.100 message object
into a GtShMultipurposeTelemetryStatus python object for internal use.

	This is the near-inverse of the GtShMultipurposeTelemetryStatus.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtShMultipurposeTelemetryStatus object.

	Returns:

	GtShMultipurposeTelemetryStatus

	Return type:

	GtShMultipurposeTelemetryStatus

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtShMultipurposeTelemetryStatus)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtShMultipurposeTelemetryStatus

GtShSimpleTelemetryStatus

Python pydantic class corresponding to json type gt.sh.simple.telemetry.status, version 100.

	
class gwproto.types.GtShSimpleTelemetryStatus(*, ShNodeAlias, TelemetryName, ValueList, ReadTimeUnixMsList, TypeName='gt.sh.simple.telemetry.status', Version='100')

	Data read from a SimpleSensor run by a SpaceHeat SCADA.

A list of readings from a simple sensor for a Spaceheat SCADA. Designed as part of a status
message sent from the SCADA to its AtomicTNode typically once every 5 minutes. The nth element
of each of its two lists refer to the same reading (i.e. what the value is, when it was
read).

[More info](https://gridworks-protocol.readthedocs.io/en/latest/simple-sensor.html)

	Parameters:

	
	ShNodeAlias (str)

	TelemetryName (TelemetryName)

	ValueList (List[int])

	ReadTimeUnixMsList (List[int])

	TypeName (Literal['gt.sh.simple.telemetry.status'])

	Version (Literal['100'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.sh.simple.telemetry.status.100 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.sh.simple.telemetry.status.100 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.sh.simple.telemetry.status.100 representation.

Instances in the class are python-native representations of gt.sh.simple.telemetry.status.100
objects, while the actual gt.sh.simple.telemetry.status.100 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtShSimpleTelemetryStatus.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	
classmethod check_axiom_1(v)

	Axiom 1: ListLengthConsistency.
ValueList and ReadTimeUnixMsList must have the same length.

	Parameters:

	v (dict)

	Return type:

	dict

	ShNodeAlias:
	
	Description: SpaceheatNodeAlias. The Alias of the SimpleSensor associated to the readings

	Format: LeftRightDot

	TelemetryName:
	
	
	Description: TelemetryName. The TelemetryName of the readings. This is used to interpet the meaning of the
	reading values. For example, WaterTempCTimes1000 means the reading is measuring
the temperature of water, in Celsius multiplied by 1000. So a value of 37000 would be
a reading of 37 deg C.

	ValueList:
	
	Description: List of Values. The values of the readings.

	ReadTimeUnixMsList:
	
	Description: List of Read Times. The times that the SImpleSensor took the readings, in unix milliseconds

	Format: ReasonableUnixTimeMs

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_sh_simple_telemetry_status.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.gt_sh_simple_telemetry_status.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.GtShSimpleTelemetryStatus_Maker(sh_node_alias, telemetry_name, value_list, read_time_unix_ms_list)

	
	Parameters:

	
	sh_node_alias (str)

	telemetry_name (TelemetryName)

	value_list (List[int])

	read_time_unix_ms_list (List[int])

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.sh.simple.telemetry.status.100 message object
into a GtShSimpleTelemetryStatus python object for internal use.

	This is the near-inverse of the GtShSimpleTelemetryStatus.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtShSimpleTelemetryStatus object.

	Returns:

	GtShSimpleTelemetryStatus

	Return type:

	GtShSimpleTelemetryStatus

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtShSimpleTelemetryStatus)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtShSimpleTelemetryStatus

GtShStatus

Python pydantic class corresponding to json type gt.sh.status, version 110.

	
class gwproto.types.GtShStatus(*, FromGNodeAlias, FromGNodeId, AboutGNodeAlias, SlotStartUnixS, ReportingPeriodS, SimpleTelemetryList, MultipurposeTelemetryList, BooleanactuatorCmdList, StatusUid, TypeName='gt.sh.status', Version='110')

	Status message sent by a Spaceheat SCADA every 5 minutes

	Parameters:

	
	FromGNodeAlias (str)

	FromGNodeId (str)

	AboutGNodeAlias (str)

	SlotStartUnixS (int)

	ReportingPeriodS (int)

	SimpleTelemetryList (List[GtShSimpleTelemetryStatus])

	MultipurposeTelemetryList (List[GtShMultipurposeTelemetryStatus])

	BooleanactuatorCmdList (List[GtShBooleanactuatorCmdStatus])

	StatusUid (str)

	TypeName (Literal['gt.sh.status'])

	Version (Literal['110'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.sh.status.110 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.sh.status.110 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.sh.status.110 representation.

Instances in the class are python-native representations of gt.sh.status.110
objects, while the actual gt.sh.status.110 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtShStatus.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	FromGNodeAlias:
	
	Description:

	Format: LeftRightDot

	FromGNodeId:
	
	Description:

	Format: UuidCanonicalTextual

	AboutGNodeAlias:
	
	Description:

	Format: LeftRightDot

	SlotStartUnixS:
	
	Description:

	Format: ReasonableUnixTimeS

	ReportingPeriodS:
	
	Description:

	SimpleTelemetryList:
	
	Description:

	MultipurposeTelemetryList:
	
	Description:

	BooleanactuatorCmdList:
	
	Description:

	StatusUid:
	
	Description:

	Format: UuidCanonicalTextual

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_sh_status.check_is_reasonable_unix_time_s(v)

	Checks ReasonableUnixTimeS format

ReasonableUnixTimeS format: unix seconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeS format

	
class gwproto.types.gt_sh_status.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.gt_sh_status.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.GtShStatus_Maker(from_g_node_alias, from_g_node_id, about_g_node_alias, slot_start_unix_s, reporting_period_s, simple_telemetry_list, multipurpose_telemetry_list, booleanactuator_cmd_list, status_uid)

	
	Parameters:

	
	from_g_node_alias (str)

	from_g_node_id (str)

	about_g_node_alias (str)

	slot_start_unix_s (int)

	reporting_period_s (int)

	simple_telemetry_list (List[GtShSimpleTelemetryStatus])

	multipurpose_telemetry_list (List[GtShMultipurposeTelemetryStatus])

	booleanactuator_cmd_list (List[GtShBooleanactuatorCmdStatus])

	status_uid (str)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.sh.status.110 message object
into a GtShStatus python object for internal use.

	This is the near-inverse of the GtShStatus.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtShStatus object.

	Returns:

	GtShStatus

	Return type:

	GtShStatus

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtShStatus)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtShStatus

GtShTelemetryFromMultipurposeSensor

Python pydantic class corresponding to json type gt.sh.telemetry.from.multipurpose.sensor, version 100.

	
class gwproto.types.GtShTelemetryFromMultipurposeSensor(*, ScadaReadTimeUnixMs, AboutNodeAliasList, TelemetryNameList, ValueList, TypeName='gt.sh.telemetry.from.multipurpose.sensor', Version='100')

	Data sent from a MultipurposeSensor to a Spaceheat SCADA.

A set of readings made at the same time by a multipurpose sensor, sent by the MultipurposeSensor
SpaceheatNode actor to its SCADA. The nth element of each of its three readings (what is
getting read, what the value is, what the TelemetryNames are).

[More info](https://gridworks-protocol.readthedocs.io/en/latest/multipurpose-sensor.html)

	Parameters:

	
	ScadaReadTimeUnixMs (int)

	AboutNodeAliasList (List[str])

	TelemetryNameList (List[TelemetryName])

	ValueList (List[int])

	TypeName (Literal['gt.sh.telemetry.from.multipurpose.sensor'])

	Version (Literal['100'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.sh.telemetry.from.multipurpose.sensor.100 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.sh.telemetry.from.multipurpose.sensor.100 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.sh.telemetry.from.multipurpose.sensor.100 representation.

Instances in the class are python-native representations of gt.sh.telemetry.from.multipurpose.sensor.100
objects, while the actual gt.sh.telemetry.from.multipurpose.sensor.100 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtShTelemetryFromMultipurposeSensor.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	
classmethod check_axiom_1(v)

	Axiom 1: ListLengthConsistency.
AboutNodeAliasList, ValueList and TelemetryNameList must all have the same length.

	Parameters:

	v (dict)

	Return type:

	dict

	ScadaReadTimeUnixMs:
	
	Description: ScadaReadTime in Unix MilliSeconds.

	Format: ReasonableUnixTimeMs

	AboutNodeAliasList:
	
	Description: AboutNodeAliasList. List of aliases of the SpaceHeat Nodes getting measured

	Format: LeftRightDot

	TelemetryNameList:
	
	Description: TelemetryNameList. List of the TelemetryNames. The nth name in this list indicates the TelemetryName of the nth alias in the AboutNodeAliasList.

	ValueList:
	
	Description: ValueList.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_sh_telemetry_from_multipurpose_sensor.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.gt_sh_telemetry_from_multipurpose_sensor.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.GtShTelemetryFromMultipurposeSensor_Maker(scada_read_time_unix_ms, about_node_alias_list, telemetry_name_list, value_list)

	
	Parameters:

	
	scada_read_time_unix_ms (int)

	about_node_alias_list (List[str])

	telemetry_name_list (List[TelemetryName])

	value_list (List[int])

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.sh.telemetry.from.multipurpose.sensor.100 message object
into a GtShTelemetryFromMultipurposeSensor python object for internal use.

	This is the near-inverse of the GtShTelemetryFromMultipurposeSensor.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtShTelemetryFromMultipurposeSensor object.

	Returns:

	GtShTelemetryFromMultipurposeSensor

	Return type:

	GtShTelemetryFromMultipurposeSensor

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtShTelemetryFromMultipurposeSensor)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtShTelemetryFromMultipurposeSensor

GtTelemetry

Python pydantic class corresponding to json type gt.telemetry, version 110.

	
class gwproto.types.GtTelemetry(*, ScadaReadTimeUnixMs, Value, Name, Exponent, TypeName='gt.telemetry', Version='110')

	Data sent from a SimpleSensor to a SCADA.

This type is meant to be used by a SimpleSensor, where _what_ is doing the reading can be
conflated with _what_ is being read.

	Parameters:

	
	ScadaReadTimeUnixMs (int)

	Value (int)

	Name (TelemetryName)

	Exponent (int)

	TypeName (Literal['gt.telemetry'])

	Version (Literal['110'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
gt.telemetry.110 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
gt.telemetry.110 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the gt.telemetry.110 representation.

Instances in the class are python-native representations of gt.telemetry.110
objects, while the actual gt.telemetry.110 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is GtTelemetry.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ScadaReadTimeUnixMs:
	
	Description: Scada Read Time in Unix Milliseconds.

	Format: ReasonableUnixTimeMs

	Value:
	
	Description: Value. The value of the reading.

	Name:
	
	Description: Name. The name of the Simple Sensing Spaceheat Node. This is both the AboutNodeName and FromNodeName for a data channel. The TelemetryName (and thus Units) are expected to be inferred by the Spaceheat Node. For example this is done initially in SCADA code according to whether the component of the Node is a PipeFlowSensorComponent, SimpleTempSensorComponent etc.

	Exponent:
	
	Description: Exponent. Say the TelemetryName is WaterTempCTimes1000; this corresponds to units of Celsius. To match the implication in the name, the Exponent should be 3, and a Value of 65300 would indicate 65.3 deg C

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.gt_telemetry.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.GtTelemetry_Maker(scada_read_time_unix_ms, value, name, exponent)

	
	Parameters:

	
	scada_read_time_unix_ms (int)

	value (int)

	name (TelemetryName)

	exponent (int)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a gt.telemetry.110 message object
into a GtTelemetry python object for internal use.

	This is the near-inverse of the GtTelemetry.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a GtTelemetry object.

	Returns:

	GtTelemetry

	Return type:

	GtTelemetry

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (GtTelemetry)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	GtTelemetry

HeartbeatB

Python pydantic class corresponding to json type heartbeat.b, version 001.

	
class gwproto.types.HeartbeatB(*, FromGNodeAlias, FromGNodeInstanceId, MyHex='0', YourLastHex, LastReceivedTimeUnixMs, SendTimeUnixMs, StartingOver, TypeName='heartbeat.b', Version='001')

	Heartbeat B.

This is the Heartbeat intended to be sent between the Scada and the AtomicTNode to allow
for block-chain validation of the status of their communication.

[More info](https://gridworks.readthedocs.io/en/latest/dispatch-contract.html)

	Parameters:

	
	FromGNodeAlias (str)

	FromGNodeInstanceId (str)

	MyHex (str)

	YourLastHex (str)

	LastReceivedTimeUnixMs (int)

	SendTimeUnixMs (int)

	StartingOver (bool)

	TypeName (Literal['heartbeat.b'])

	Version (Literal['001'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
heartbeat.b.001 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
heartbeat.b.001 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the heartbeat.b.001 representation.

Instances in the class are python-native representations of heartbeat.b.001
objects, while the actual heartbeat.b.001 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is HeartbeatB.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	FromGNodeAlias:
	
	Description: My GNodeAlias.

	Format: LeftRightDot

	FromGNodeInstanceId:
	
	Description: My GNodeInstanceId.

	Format: UuidCanonicalTextual

	MyHex:
	
	Description: Hex character getting sent.

	Format: HexChar

	YourLastHex:
	
	Description: Last hex character received from heartbeat partner..

	Format: HexChar

	LastReceivedTimeUnixMs:
	
	Description: Time YourLastHex was received on my clock.

	Format: ReasonableUnixTimeMs

	SendTimeUnixMs:
	
	Description: Time this message is made and sent on my clock.

	Format: ReasonableUnixTimeMs

	StartingOver:
	
	Description: True if the heartbeat initiator wants to start the volley over. (typically the AtomicTNode in an AtomicTNode / SCADA pair) wants to start the heartbeating volley over. The result is that its partner will not expect the initiator to know its last Hex.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.heartbeat_b.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.heartbeat_b.check_is_hex_char(v)

	Checks HexChar format

HexChar format: single-char string in ‘0123456789abcdefABCDEF’

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not HexChar format

	
class gwproto.types.heartbeat_b.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.heartbeat_b.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.HeartbeatB_Maker(from_g_node_alias, from_g_node_instance_id, my_hex, your_last_hex, last_received_time_unix_ms, send_time_unix_ms, starting_over)

	
	Parameters:

	
	from_g_node_alias (str)

	from_g_node_instance_id (str)

	my_hex (str)

	your_last_hex (str)

	last_received_time_unix_ms (int)

	send_time_unix_ms (int)

	starting_over (bool)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a heartbeat.b.001 message object
into a HeartbeatB python object for internal use.

	This is the near-inverse of the HeartbeatB.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a HeartbeatB object.

	Returns:

	HeartbeatB

	Return type:

	HeartbeatB

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (HeartbeatB)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	HeartbeatB

HubitatCacGt

Python pydantic class corresponding to json type hubitat.cac.gt, version 000.

	
class gwproto.types.HubitatCacGt(*, ComponentAttributeClassId, DisplayName=None, TypeName='hubitat.cac.gt', Version='000')

	
	Parameters:

	
	ComponentAttributeClassId (str)

	DisplayName (str | None)

	TypeName (Literal['hubitat.cac.gt'])

	Version (Literal['000'])

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description: DisplayName. Sample: Hubitat Elevation C-7

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.HubitatCacGt_Maker(cac)

	
	Parameters:

	cac (HubitatCac)

HubitatComponentGt

Python pydantic class corresponding to json type hubitat.component.gt, version 000.

	
class gwproto.types.HubitatComponentGt(*, ComponentId, ComponentAttributeClassId, DisplayName=None, HwUid=None, TypeName='hubitat.component.gt', Version='000', Hubitat)

	
	Parameters:

	
	ComponentId (str)

	ComponentAttributeClassId (str)

	DisplayName (str | None)

	HwUid (str | None)

	TypeName (Literal['hubitat.component.gt'])

	Version (Literal['000'])

	Hubitat (HubitatGt)

	ComponentId:
	
	Description: Component Id. Primary GridWorks identifier for a specific physical instance of a Hubitat, and also as a more generic Component.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	Hubitat:
	
	Description: Hubitat Type Helper. Includes the information needed to access the MakerAPI of a Hubitat on the Local area network: Host, MakerApiID, AccessToken and MacAddress for the Hubitat.

	DisplayName:
	
	Description: Sample: Oak Hubitat 81:37:82 (using the last 6 digits of the Hubitat MacId in the display name, as well as the short alias for the associated g node.)

	HwUid:
	
	Description: Hardware Unique Id. Use the final 6 characters of the Hubitat mac address.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.HubitatComponentGt_Maker(component)

	
	Parameters:

	component (HubitatComponent)

HubitatPollerCacGt

Python pydantic class corresponding to json type hubitat.poller.cac.gt, version 000.

	
class gwproto.types.HubitatPollerCacGt(*, ComponentAttributeClassId, DisplayName=None, TypeName='hubitat.poller.cac.gt', Version='000')

	
	Parameters:

	
	ComponentAttributeClassId (str)

	DisplayName (str | None)

	TypeName (Literal['hubitat.poller.cac.gt'])

	Version (Literal['000'])

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	DisplayName:
	
	Description: DisplayName. Sample: Honeywell T6 ZWave Thermostat

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.HubitatPollerCacGt_Maker

	

HubitatPollerComponentGt

Python pydantic class corresponding to json type hubitat.poller.component.gt, version 000.

	
class gwproto.types.HubitatPollerComponentGt(*, ComponentId, ComponentAttributeClassId, DisplayName=None, HwUid=None, TypeName='hubitat.poller.component.gt', Version='000', Poller)

	
	Parameters:

	
	ComponentId (str)

	ComponentAttributeClassId (str)

	DisplayName (str | None)

	HwUid (str | None)

	TypeName (Literal['hubitat.poller.component.gt'])

	Version (Literal['000'])

	Poller (HubitatPollerGt)

	ComponentId:
	
	Description: ComponentId.

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId.

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description: DisplayName. Sample: Downstairs Thermostat

	HwUid:
	
	Description: HwUid. Unique Hardware Identifier

	Poller:
	
	Description: Poller. Includes hubitat_component_id (str), device_id (int), enabled (bool), poll_period_s (int) and attributes.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.HubitatPollerComponentGt_Maker

	

HubitatTankCacGt

Python pydantic class corresponding to json type hubitat.tank.cac.gt, version 000.

	
class gwproto.types.HubitatTankCacGt(*, ComponentAttributeClassId, DisplayName=None, TypeName='hubitat.tank.cac.gt', Version='000')

	
	Parameters:

	
	ComponentAttributeClassId (str)

	DisplayName (str | None)

	TypeName (Literal['hubitat.tank.cac.gt'])

	Version (Literal['000'])

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description: Sample: GridWorks TankModule1

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.HubitatTankCacGt_Maker(cac)

	
	Parameters:

	cac (HubitatTankModuleCac)

HubitatTankComponentGt

Python pydantic class corresponding to json type hubitat.tank.component.gt, version 000.

	
class gwproto.types.HubitatTankComponentGt(*, ComponentId, ComponentAttributeClassId, DisplayName=None, HwUid=None, TypeName='hubitat.tank.component.gt', Version='000', Tank)

	
	Parameters:

	
	ComponentId (str)

	ComponentAttributeClassId (str)

	DisplayName (str | None)

	HwUid (str | None)

	TypeName (Literal['hubitat.tank.component.gt'])

	Version (Literal['000'])

	Tank (HubitatTankSettingsGt)

	ComponentId:
	
	Description: Component Id. Primary GridWorks identifier for a specific physical instance of a GridWorks TankModule1 and also as a more generic Component.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	Tank:
	
	Description: Tank. The configuration information (HubitatTankSettingsGt) about the 4 analog temperature sensors for a GridWorks TankModule1.

	DisplayName:
	
	Description: Sample: GridWorks TankModule <buffer> SN 1010

	HwUid:
	
	Description: Hardware Unique Id. Use the GridWorks Serial number for GridWorks TankModule1.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.HubitatTankComponentGt_Maker(component)

	
	Parameters:

	component (HubitatTankComponent)

MultipurposeSensorCacGt

Python pydantic class corresponding to json type multipurpose.sensor.cac.gt, version 000.

	
class gwproto.types.MultipurposeSensorCacGt(*, ComponentAttributeClassId, MakeModel, PollPeriodMs, Exponent, TempUnit, TelemetryNameList, MaxThermistors=None, DisplayName=None, CommsMethod=None, TypeName='multipurpose.sensor.cac.gt', Version='000')

	Type for tracking Multipuprose Sensor ComponentAttributeClasses.

GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for
managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.

[More info](https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html)

	Parameters:

	
	ComponentAttributeClassId (str)

	MakeModel (MakeModel)

	PollPeriodMs (int)

	Exponent (int)

	TempUnit (Unit)

	TelemetryNameList (List[TelemetryName])

	MaxThermistors (int | None)

	DisplayName (str | None)

	CommsMethod (str | None)

	TypeName (Literal['multipurpose.sensor.cac.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
multipurpose.sensor.cac.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
multipurpose.sensor.cac.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the multipurpose.sensor.cac.gt.000 representation.

Instances in the class are python-native representations of multipurpose.sensor.cac.gt.000
objects, while the actual multipurpose.sensor.cac.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is MultipurposeSensorCacGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	MakeModel:
	
	Description: MakeModel. Meant to be enough to articulate any difference in how GridWorks code would interact with a device. Should be able to use this information to buy or build a device.

	PollPeriodMs:
	
	Description: Poll Period in Milliseconds. Poll Period refers to the period of time between two readings by the local actor. This is in contrast to Capture Period, which refers to the period between readings that are sent up to the cloud (or otherwise saved for the long-term).

	Exponent:
	
	Description: Exponent. Say the TelemetryName is WaterTempCTimes1000; this corresponds to units of Celsius. To match the implication in the name, the Exponent should be 3, and a Value of 65300 would indicate 65.3 deg C

	TempUnit:
	
	Description: Temp Unit.

	TelemetryNameList:
	
	Description:

	MaxThermistors:
	
	Description: The maximum number of temperature sensors this multipurpose sensor can read.

	DisplayName:
	
	Description: Sample: GridWorks TSnap1.0 as 12-channel analog temp sensor

	CommsMethod:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.multipurpose_sensor_cac_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.MultipurposeSensorCacGt_Maker(component_attribute_class_id, make_model, poll_period_ms, exponent, temp_unit, telemetry_name_list, max_thermistors, display_name, comms_method)

	
	Parameters:

	
	component_attribute_class_id (str)

	make_model (MakeModel)

	poll_period_ms (int)

	exponent (int)

	temp_unit (Unit)

	telemetry_name_list (List[TelemetryName])

	max_thermistors (int | None)

	display_name (str | None)

	comms_method (str | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a multipurpose.sensor.cac.gt.000 message object
into a MultipurposeSensorCacGt python object for internal use.

	This is the near-inverse of the MultipurposeSensorCacGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a MultipurposeSensorCacGt object.

	Returns:

	MultipurposeSensorCacGt

	Return type:

	MultipurposeSensorCacGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (MultipurposeSensorCacGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	MultipurposeSensorCacGt

MultipurposeSensorComponentGt

Python pydantic class corresponding to json type multipurpose.sensor.component.gt, version 000.

	ComponentId:
	
	Description: Component Id. Primary GridWorks identifier for a specific physical instance of a MultipurposeSensor (perhaps only the 12-channel analog temp sensor), and also as a more generic Component.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	ChannelList:
	
	Description:

	ConfigList:
	
	Description:

	HwUid:
	
	Description: Hardware Unique Id.

	DisplayName:
	
	Description: Sample: Oak Multipurpose Temp Sensor Component <100>

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.multipurpose_sensor_component_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.multipurpose_sensor_component_gt.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

PipeFlowSensorCacGt

Python pydantic class corresponding to json type pipe.flow.sensor.cac.gt, version 000.

	
class gwproto.types.PipeFlowSensorCacGt(*, ComponentAttributeClassId, MakeModel, DisplayName=None, CommsMethod=None, TypeName='pipe.flow.sensor.cac.gt', Version='000')

	Type for tracking Pipe Flow Sensor ComponentAttributeClasses.

GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for
managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.

[More info](https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html)

	Parameters:

	
	ComponentAttributeClassId (str)

	MakeModel (MakeModel)

	DisplayName (str | None)

	CommsMethod (str | None)

	TypeName (Literal['pipe.flow.sensor.cac.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
pipe.flow.sensor.cac.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
pipe.flow.sensor.cac.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the pipe.flow.sensor.cac.gt.000 representation.

Instances in the class are python-native representations of pipe.flow.sensor.cac.gt.000
objects, while the actual pipe.flow.sensor.cac.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is PipeFlowSensorCacGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	MakeModel:
	
	Description:

	DisplayName:
	
	Description: Sample: Atlas Scientific EZO FLO i2c

	CommsMethod:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.pipe_flow_sensor_cac_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.PipeFlowSensorCacGt_Maker(component_attribute_class_id, make_model, display_name, comms_method)

	
	Parameters:

	
	component_attribute_class_id (str)

	make_model (MakeModel)

	display_name (str | None)

	comms_method (str | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a pipe.flow.sensor.cac.gt.000 message object
into a PipeFlowSensorCacGt python object for internal use.

	This is the near-inverse of the PipeFlowSensorCacGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a PipeFlowSensorCacGt object.

	Returns:

	PipeFlowSensorCacGt

	Return type:

	PipeFlowSensorCacGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (PipeFlowSensorCacGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	PipeFlowSensorCacGt

PipeFlowSensorComponentGt

Python pydantic class corresponding to json type pipe.flow.sensor.component.gt, version 000.

	
class gwproto.types.PipeFlowSensorComponentGt(*, ComponentId, ComponentAttributeClassId, I2cAddress, ConversionFactor, DisplayName=None, HwUid=None, ExpectedMaxGpmTimes100=None, TypeName='pipe.flow.sensor.component.gt', Version='000')

	Type for tracking Pipe Flow Sensor Components.

Designed for Pipe Flow Sensors. It extends the component.gt.000 type. Authority for the
attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName,
HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks ‘BackOffice’
structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass
are both required and immutable. HwUid is optional but once it is set to a non-null value
that is also immutable - it is meant to be an immutable identifier associated to a specific
physical device, ideally one that can be read remotely by the SCADA and also by the naked
eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.

[More info](https://gridworks-protocol.readthedocs.io/en/latest/component.html)

	Parameters:

	
	ComponentId (str)

	ComponentAttributeClassId (str)

	I2cAddress (int)

	ConversionFactor (float)

	DisplayName (str | None)

	HwUid (str | None)

	ExpectedMaxGpmTimes100 (int | None)

	TypeName (Literal['pipe.flow.sensor.component.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
pipe.flow.sensor.component.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
pipe.flow.sensor.component.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the pipe.flow.sensor.component.gt.000 representation.

Instances in the class are python-native representations of pipe.flow.sensor.component.gt.000
objects, while the actual pipe.flow.sensor.component.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is PipeFlowSensorComponentGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentId:
	
	Description: Component Id. Primary GridWorks identifier for a specific physical instance of a PipeFlowSensor, and also as a more generic Component.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	I2cAddress:
	
	Description:

	ConversionFactor:
	
	Description:

	DisplayName:
	
	Description: Sample: Pipe Flow Meter Component <dist-flow>

	HwUid:
	
	Description: Hardware Unique Id.

	ExpectedMaxGpmTimes100:
	
	Description: Expected Max Flow in Gallons per Minute, times 100.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.pipe_flow_sensor_component_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.PipeFlowSensorComponentGt_Maker(component_id, component_attribute_class_id, i2c_address, conversion_factor, display_name, hw_uid, expected_max_gpm_times100)

	
	Parameters:

	
	component_id (str)

	component_attribute_class_id (str)

	i2c_address (int)

	conversion_factor (float)

	display_name (str | None)

	hw_uid (str | None)

	expected_max_gpm_times100 (int | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a pipe.flow.sensor.component.gt.000 message object
into a PipeFlowSensorComponentGt python object for internal use.

	This is the near-inverse of the PipeFlowSensorComponentGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a PipeFlowSensorComponentGt object.

	Returns:

	PipeFlowSensorComponentGt

	Return type:

	PipeFlowSensorComponentGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (PipeFlowSensorComponentGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	PipeFlowSensorComponentGt

PowerWatts

Python pydantic class corresponding to json type power.watts, version 000.

	
class gwproto.types.PowerWatts(*, Watts, TypeName='power.watts', Version='000')

	Real-time power of TerminalAsset in Watts.

Used by a SCADA -> Atn or Atn -> AggregatedTNode to report real-time power of their TerminalAsset.
Positive number means WITHDRAWAL from the grid - so generating electricity creates a negative
number. This message is considered worse than useless to send after the first attempt, and
does not require an ack. Shares the same purpose as gs.pwr, but is not designed to minimize
bytes so comes in JSON format.

	Parameters:

	
	Watts (int)

	TypeName (Literal['power.watts'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
power.watts.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
power.watts.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the power.watts.000 representation.

Instances in the class are python-native representations of power.watts.000
objects, while the actual power.watts.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is PowerWatts.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	Watts:
	
	Description: Current Power in Watts.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.PowerWatts_Maker(watts)

	
	Parameters:

	watts (int)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a power.watts.000 message object
into a PowerWatts python object for internal use.

	This is the near-inverse of the PowerWatts.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a PowerWatts object.

	Returns:

	PowerWatts

	Return type:

	PowerWatts

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (PowerWatts)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	PowerWatts

RelayCacGt

Python pydantic class corresponding to json type relay.cac.gt, version 000.

	
class gwproto.types.RelayCacGt(*, ComponentAttributeClassId, MakeModel, DisplayName=None, TypicalResponseTimeMs, TypeName='relay.cac.gt', Version='000')

	Type for tracking Relay ComponentAttributeClasses.

GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for
managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.

[More info](https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html)

	Parameters:

	
	ComponentAttributeClassId (str)

	MakeModel (MakeModel)

	DisplayName (str | None)

	TypicalResponseTimeMs (int)

	TypeName (Literal['relay.cac.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
relay.cac.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
relay.cac.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the relay.cac.gt.000 representation.

Instances in the class are python-native representations of relay.cac.gt.000
objects, while the actual relay.cac.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is RelayCacGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	MakeModel:
	
	Description:

	DisplayName:
	
	Description:

	TypicalResponseTimeMs:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.relay_cac_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.RelayCacGt_Maker(component_attribute_class_id, make_model, display_name, typical_response_time_ms)

	
	Parameters:

	
	component_attribute_class_id (str)

	make_model (MakeModel)

	display_name (str | None)

	typical_response_time_ms (int)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a relay.cac.gt.000 message object
into a RelayCacGt python object for internal use.

	This is the near-inverse of the RelayCacGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a RelayCacGt object.

	Returns:

	RelayCacGt

	Return type:

	RelayCacGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (RelayCacGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	RelayCacGt

RelayComponentGt

Python pydantic class corresponding to json type relay.component.gt, version 000.

	
class gwproto.types.RelayComponentGt(*, ComponentId, ComponentAttributeClassId, DisplayName=None, Gpio=None, HwUid=None, NormallyOpen, TypeName='relay.component.gt', Version='000')

	Type for tracking Relay Components.

Designed for Relays. It extends the component.gt.000 type. Authority for the attributes
of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName, HwUid) belongs
to the WorldRegistry. The WorldRegistry is part of the GridWorks ‘BackOffice’ structure
for managing relational device data . Notably, ComponentId and ComponentAttributeClass are
both required and immutable. HwUid is optional but once it is set to a non-null value that
is also immutable - it is meant to be an immutable identifier associated to a specific physical
device, ideally one that can be read remotely by the SCADA and also by the naked eye. The
DisplayName is mutable, with its current value in time governed by the WorldRegistry.

[More info](https://g-node-registry.readthedocs.io/en/latest/component.html)

	Parameters:

	
	ComponentId (str)

	ComponentAttributeClassId (str)

	DisplayName (str | None)

	Gpio (int | None)

	HwUid (str | None)

	NormallyOpen (bool)

	TypeName (Literal['relay.component.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
relay.component.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
relay.component.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the relay.component.gt.000 representation.

Instances in the class are python-native representations of relay.component.gt.000
objects, while the actual relay.component.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is RelayComponentGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentId:
	
	Description: Component Id. Primary GridWorks identifier for a specific physical instance of a Relay, and also as a more generic Component.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description:

	Gpio:
	
	Description:

	HwUid:
	
	Description: Hardware Unique Id.

	NormallyOpen:
	
	Description: Normally Open. Normally open relays default in the open position, meaning that when they’re not in use, there is no contact between the circuits. When power is introduced, an electromagnet pulls the first circuit into contact with the second, thereby closing the circuit and allowing power to flow through

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.relay_component_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.RelayComponentGt_Maker(component_id, component_attribute_class_id, display_name, gpio, hw_uid, normally_open)

	
	Parameters:

	
	component_id (str)

	component_attribute_class_id (str)

	display_name (str | None)

	gpio (int | None)

	hw_uid (str | None)

	normally_open (bool)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a relay.component.gt.000 message object
into a RelayComponentGt python object for internal use.

	This is the near-inverse of the RelayComponentGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a RelayComponentGt object.

	Returns:

	RelayComponentGt

	Return type:

	RelayComponentGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (RelayComponentGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	RelayComponentGt

ResistiveHeaterCacGt

Python pydantic class corresponding to json type resistive.heater.cac.gt, version 000.

	
class gwproto.types.ResistiveHeaterCacGt(*, ComponentAttributeClassId, MakeModel, DisplayName=None, NameplateMaxPowerW, RatedVoltageV, TypeName='resistive.heater.cac.gt', Version='000')

	Type for tracking Resistive Heater ComponentAttributeClasses.

GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for
managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.

[More info](https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html)

	Parameters:

	
	ComponentAttributeClassId (str)

	MakeModel (MakeModel)

	DisplayName (str | None)

	NameplateMaxPowerW (int)

	RatedVoltageV (int)

	TypeName (Literal['resistive.heater.cac.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
resistive.heater.cac.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
resistive.heater.cac.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the resistive.heater.cac.gt.000 representation.

Instances in the class are python-native representations of resistive.heater.cac.gt.000
objects, while the actual resistive.heater.cac.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is ResistiveHeaterCacGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	MakeModel:
	
	Description:

	DisplayName:
	
	Description:

	NameplateMaxPowerW:
	
	Description:

	RatedVoltageV:
	
	Description:

	Format: PositiveInteger

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.resistive_heater_cac_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.resistive_heater_cac_gt.check_is_positive_integer(v)

	Must be positive when interpreted as an integer. Interpretation as an
integer follows the pydantic rules for this - which will round down
rational numbers. So 1.7 will be interpreted as 1 and is also fine,
while 0.5 is interpreted as 0 and will raise an exception.

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v < 1

	
class gwproto.types.ResistiveHeaterCacGt_Maker(component_attribute_class_id, make_model, display_name, nameplate_max_power_w, rated_voltage_v)

	
	Parameters:

	
	component_attribute_class_id (str)

	make_model (MakeModel)

	display_name (str | None)

	nameplate_max_power_w (int)

	rated_voltage_v (int)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a resistive.heater.cac.gt.000 message object
into a ResistiveHeaterCacGt python object for internal use.

	This is the near-inverse of the ResistiveHeaterCacGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a ResistiveHeaterCacGt object.

	Returns:

	ResistiveHeaterCacGt

	Return type:

	ResistiveHeaterCacGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (ResistiveHeaterCacGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	ResistiveHeaterCacGt

ResistiveHeaterComponentGt

Python pydantic class corresponding to json type resistive.heater.component.gt, version 000.

	
class gwproto.types.ResistiveHeaterComponentGt(*, ComponentId, ComponentAttributeClassId, DisplayName=None, HwUid=None, TestedMaxHotMilliOhms=None, TestedMaxColdMilliOhms=None, TypeName='resistive.heater.component.gt', Version='000')

	Type for tracking Resistive Heater Components.

Designed for Resistive Heaters. It extends the component.gt.000 type. Authority for the
attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId, DisplayName,
HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks ‘BackOffice’
structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass
are both required and immutable. HwUid is optional but once it is set to a non-null value
that is also immutable - it is meant to be an immutable identifier associated to a specific
physical device, ideally one that can be read remotely by the SCADA and also by the naked
eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.

[More info](https://g-node-registry.readthedocs.io/en/latest/component.html)

	Parameters:

	
	ComponentId (str)

	ComponentAttributeClassId (str)

	DisplayName (str | None)

	HwUid (str | None)

	TestedMaxHotMilliOhms (int | None)

	TestedMaxColdMilliOhms (int | None)

	TypeName (Literal['resistive.heater.component.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
resistive.heater.component.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
resistive.heater.component.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the resistive.heater.component.gt.000 representation.

Instances in the class are python-native representations of resistive.heater.component.gt.000
objects, while the actual resistive.heater.component.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is ResistiveHeaterComponentGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentId:
	
	Description: Component Id. Primary GridWorks identifier for a specific physical instance of a ResistiveHeater, and also as a more generic Component.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description:

	HwUid:
	
	Description: Hardware Unique Id.

	TestedMaxHotMilliOhms:
	
	Description:

	TestedMaxColdMilliOhms:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.resistive_heater_component_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.ResistiveHeaterComponentGt_Maker(component_id, component_attribute_class_id, display_name, hw_uid, tested_max_hot_milli_ohms, tested_max_cold_milli_ohms)

	
	Parameters:

	
	component_id (str)

	component_attribute_class_id (str)

	display_name (str | None)

	hw_uid (str | None)

	tested_max_hot_milli_ohms (int | None)

	tested_max_cold_milli_ohms (int | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a resistive.heater.component.gt.000 message object
into a ResistiveHeaterComponentGt python object for internal use.

	This is the near-inverse of the ResistiveHeaterComponentGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a ResistiveHeaterComponentGt object.

	Returns:

	ResistiveHeaterComponentGt

	Return type:

	ResistiveHeaterComponentGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (ResistiveHeaterComponentGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	ResistiveHeaterComponentGt

RestPollerCacGt

Python pydantic class corresponding to json type rest.poller.cac.gt, version 000.

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

RestPollerComponentGt

Python pydantic class corresponding to json type rest.poller.component.gt, version 000.

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

SimpleTempSensorCacGt

Python pydantic class corresponding to json type simple.temp.sensor.cac.gt, version 000.

	
class gwproto.types.SimpleTempSensorCacGt(*, ComponentAttributeClassId, MakeModel, TypicalResponseTimeMs, Exponent, TempUnit, TelemetryName, DisplayName=None, CommsMethod=None, TypeName='simple.temp.sensor.cac.gt', Version='000')

	Type for tracking Simple Temp Sensor ComponentAttributeClasses.

GridWorks Spaceheat SCADA uses the GridWorks GNodeRegistry structures and abstractions for
managing relational device data. The Cac, or ComponentAttributeClass, is part of this structure.

[More info](https://g-node-registry.readthedocs.io/en/latest/component-attribute-class.html)

	Parameters:

	
	ComponentAttributeClassId (str)

	MakeModel (MakeModel)

	TypicalResponseTimeMs (int)

	Exponent (int)

	TempUnit (Unit)

	TelemetryName (TelemetryName)

	DisplayName (str | None)

	CommsMethod (str | None)

	TypeName (Literal['simple.temp.sensor.cac.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
simple.temp.sensor.cac.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
simple.temp.sensor.cac.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the simple.temp.sensor.cac.gt.000 representation.

Instances in the class are python-native representations of simple.temp.sensor.cac.gt.000
objects, while the actual simple.temp.sensor.cac.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is SimpleTempSensorCacGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class (aka ‘cac’ or Component Attribute Class). Authority is maintained by the World Registry.

	Format: UuidCanonicalTextual

	MakeModel:
	
	Description:

	TypicalResponseTimeMs:
	
	Description:

	Exponent:
	
	Description: Exponent. Say the TelemetryName is WaterTempCTimes1000; this corresponds to units of Celsius. To match the implication in the name, the Exponent should be 3, and a Value of 65300 would indicate 65.3 deg C

	TempUnit:
	
	Description:

	TelemetryName:
	
	Description:

	DisplayName:
	
	Description:

	CommsMethod:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.simple_temp_sensor_cac_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.SimpleTempSensorCacGt_Maker(component_attribute_class_id, make_model, typical_response_time_ms, exponent, temp_unit, telemetry_name, display_name, comms_method)

	
	Parameters:

	
	component_attribute_class_id (str)

	make_model (MakeModel)

	typical_response_time_ms (int)

	exponent (int)

	temp_unit (Unit)

	telemetry_name (TelemetryName)

	display_name (str | None)

	comms_method (str | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a simple.temp.sensor.cac.gt.000 message object
into a SimpleTempSensorCacGt python object for internal use.

	This is the near-inverse of the SimpleTempSensorCacGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a SimpleTempSensorCacGt object.

	Returns:

	SimpleTempSensorCacGt

	Return type:

	SimpleTempSensorCacGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (SimpleTempSensorCacGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	SimpleTempSensorCacGt

SimpleTempSensorComponentGt

Python pydantic class corresponding to json type simple.temp.sensor.component.gt, version 000.

	
class gwproto.types.SimpleTempSensorComponentGt(*, ComponentId, ComponentAttributeClassId, DisplayName=None, HwUid=None, Channel=None, TypeName='simple.temp.sensor.component.gt', Version='000')

	Type for tracking Simple Temp Sensor Components.

Designed for simple temp sensors that read only one temp. It extends the component.gt.000
type. Authority for the attributes of the component.gt.000 (ComponentId, ComponentAttributeClassId,
DisplayName, HwUid) belongs to the WorldRegistry. The WorldRegistry is part of the GridWorks
‘BackOffice’ structure for managing relational device data . Notably, ComponentId and ComponentAttributeClass
are both required and immutable. HwUid is optional but once it is set to a non-null value
that is also immutable - it is meant to be an immutable identifier associated to a specific
physical device, ideally one that can be read remotely by the SCADA and also by the naked
eye. The DisplayName is mutable, with its current value in time governed by the WorldRegistry.

[More info](https://g-node-registry.readthedocs.io/en/latest/component.html)

	Parameters:

	
	ComponentId (str)

	ComponentAttributeClassId (str)

	DisplayName (str | None)

	HwUid (str | None)

	Channel (int | None)

	TypeName (Literal['simple.temp.sensor.component.gt'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
simple.temp.sensor.component.gt.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
simple.temp.sensor.component.gt.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the simple.temp.sensor.component.gt.000 representation.

Instances in the class are python-native representations of simple.temp.sensor.component.gt.000
objects, while the actual simple.temp.sensor.component.gt.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is SimpleTempSensorComponentGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ComponentId:
	
	Description: Component Id. Primary GridWorks identifier for a specific physical instance of a SimpleTempSensor, and also as a more generic Component.

	Format: UuidCanonicalTextual

	ComponentAttributeClassId:
	
	Description: ComponentAttributeClassId. Unique identifier for the device class. Authority for these, as well as the relationship between Components and ComponentAttributeClasses (Cacs) is maintained by the World Registry.

	Format: UuidCanonicalTextual

	DisplayName:
	
	Description:

	HwUid:
	
	Description: Hardware Unique Id.

	Channel:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.simple_temp_sensor_component_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.SimpleTempSensorComponentGt_Maker(component_id, component_attribute_class_id, display_name, hw_uid, channel)

	
	Parameters:

	
	component_id (str)

	component_attribute_class_id (str)

	display_name (str | None)

	hw_uid (str | None)

	channel (int | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a simple.temp.sensor.component.gt.000 message object
into a SimpleTempSensorComponentGt python object for internal use.

	This is the near-inverse of the SimpleTempSensorComponentGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a SimpleTempSensorComponentGt object.

	Returns:

	SimpleTempSensorComponentGt

	Return type:

	SimpleTempSensorComponentGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (SimpleTempSensorComponentGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	SimpleTempSensorComponentGt

SnapshotSpaceheat

Python pydantic class corresponding to json type snapshot.spaceheat, version 000.

	
class gwproto.types.SnapshotSpaceheat(*, FromGNodeAlias, FromGNodeInstanceId, Snapshot, TypeName='snapshot.spaceheat', Version='000')

	
	Parameters:

	
	FromGNodeAlias (str)

	FromGNodeInstanceId (str)

	Snapshot (TelemetrySnapshotSpaceheat)

	TypeName (Literal['snapshot.spaceheat'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
snapshot.spaceheat.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
snapshot.spaceheat.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the snapshot.spaceheat.000 representation.

Instances in the class are python-native representations of snapshot.spaceheat.000
objects, while the actual snapshot.spaceheat.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is SnapshotSpaceheat.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	FromGNodeAlias:
	
	Description:

	Format: LeftRightDot

	FromGNodeInstanceId:
	
	Description:

	Format: UuidCanonicalTextual

	Snapshot:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.snapshot_spaceheat.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.snapshot_spaceheat.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.SnapshotSpaceheat_Maker(from_g_node_alias, from_g_node_instance_id, snapshot)

	
	Parameters:

	
	from_g_node_alias (str)

	from_g_node_instance_id (str)

	snapshot (TelemetrySnapshotSpaceheat)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a snapshot.spaceheat.000 message object
into a SnapshotSpaceheat python object for internal use.

	This is the near-inverse of the SnapshotSpaceheat.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a SnapshotSpaceheat object.

	Returns:

	SnapshotSpaceheat

	Return type:

	SnapshotSpaceheat

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (SnapshotSpaceheat)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	SnapshotSpaceheat

SpaceheatNodeGt

Python pydantic class corresponding to json type spaceheat.node.gt, version 100.

	
class gwproto.types.SpaceheatNodeGt(*, ShNodeId, Alias, ActorClass, Role, DisplayName=None, ComponentId=None, ReportingSamplePeriodS=None, RatedVoltageV=None, TypicalVoltageV=None, InPowerMetering=None, TypeName='spaceheat.node.gt', Version='100')

	Spaceheat Node.

A SpaceheatNode, or ShNode, is an organizing principal for the SCADA software. ShNodes can
represent both underlying physical objects (water tank), measurements of these objects (temperature
sensing at the top of a water tank), and actors within the code (an actor measuring multiple
temperatures, or an actor responsible for filtering/smoothing temperature data for the purposes
of thermostatic control).

[More info](https://gridworks-protocol.readthedocs.io/en/latest/spaceheat-node.html)

	Parameters:

	
	ShNodeId (str)

	Alias (str)

	ActorClass (ActorClass)

	Role (Role)

	DisplayName (str | None)

	ComponentId (str | None)

	ReportingSamplePeriodS (int | None)

	RatedVoltageV (int | None)

	TypicalVoltageV (int | None)

	InPowerMetering (bool | None)

	TypeName (Literal['spaceheat.node.gt'])

	Version (Literal['100'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
spaceheat.node.gt.100 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
spaceheat.node.gt.100 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the spaceheat.node.gt.100 representation.

Instances in the class are python-native representations of spaceheat.node.gt.100
objects, while the actual spaceheat.node.gt.100 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is SpaceheatNodeGt.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	ShNodeId:
	
	Description:

	Format: UuidCanonicalTextual

	Alias:
	
	Description:

	Format: LeftRightDot

	ActorClass:
	
	Description:

	Role:
	
	Description:

	DisplayName:
	
	Description:

	ComponentId:
	
	Description: Unique identifier for Spaceheat Node’s Component. Used if a Spaceheat Node is associated with a physical device.

	Format: UuidCanonicalTextual

	ReportingSamplePeriodS:
	
	Description:

	RatedVoltageV:
	
	Description:

	Format: PositiveInteger

	TypicalVoltageV:
	
	Description:

	Format: PositiveInteger

	InPowerMetering:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.spaceheat_node_gt.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.spaceheat_node_gt.check_is_positive_integer(v)

	Must be positive when interpreted as an integer. Interpretation as an
integer follows the pydantic rules for this - which will round down
rational numbers. So 1.7 will be interpreted as 1 and is also fine,
while 0.5 is interpreted as 0 and will raise an exception.

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v < 1

	
class gwproto.types.spaceheat_node_gt.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.SpaceheatNodeGt_Maker(sh_node_id, alias, actor_class, role, display_name, component_id, reporting_sample_period_s, rated_voltage_v, typical_voltage_v, in_power_metering)

	
	Parameters:

	
	sh_node_id (str)

	alias (str)

	actor_class (ActorClass)

	role (Role)

	display_name (str | None)

	component_id (str | None)

	reporting_sample_period_s (int | None)

	rated_voltage_v (int | None)

	typical_voltage_v (int | None)

	in_power_metering (bool | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a spaceheat.node.gt.100 message object
into a SpaceheatNodeGt python object for internal use.

	This is the near-inverse of the SpaceheatNodeGt.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a SpaceheatNodeGt object.

	Returns:

	SpaceheatNodeGt

	Return type:

	SpaceheatNodeGt

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (SpaceheatNodeGt)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	SpaceheatNodeGt

TaDataChannels

Python pydantic class corresponding to json type ta.data.channels, version 000.

	
class gwproto.types.TaDataChannels(*, TerminalAssetGNodeAlias, TerminalAssetGNodeId, TimeUnixS, Author, Channels, Identifier, TypeName='ta.data.channels', Version='000')

	Terminal Asset Data Channels.

A list of data channels associated to a specific Terminal Asset.

	Parameters:

	
	TerminalAssetGNodeAlias (str)

	TerminalAssetGNodeId (str)

	TimeUnixS (int)

	Author (str)

	Channels (List[DataChannel])

	Identifier (str)

	TypeName (Literal['ta.data.channels'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
ta.data.channels.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
ta.data.channels.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the ta.data.channels.000 representation.

Instances in the class are python-native representations of ta.data.channels.000
objects, while the actual ta.data.channels.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is TaDataChannels.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	TerminalAssetGNodeAlias:
	
	Description: GNodeAlias for the Terminal Asset. The Alias of the Terminal Asset about which the time series data is providing information.

	Format: LeftRightDot

	TerminalAssetGNodeId:
	
	Description: GNodeId for the Terminal Asset. The immutable unique identifier for the Terminal Asset.

	Format: UuidCanonicalTextual

	TimeUnixS:
	
	Description: TimeUnixS. The time that this list of data channels was created

	Format: ReasonableUnixTimeS

	Author:
	
	Description: Author of this list of data channels.

	Channels:
	
	Description: The list of data channels.

	Identifier:
	
	Description: Identifier. Unique identifier for a specific instance of this type that can be used to establish how time series csv’s were constructed.

	Format: UuidCanonicalTextual

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.ta_data_channels.check_is_reasonable_unix_time_s(v)

	Checks ReasonableUnixTimeS format

ReasonableUnixTimeS format: unix seconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeS format

	
class gwproto.types.ta_data_channels.check_is_uuid_canonical_textual(v)

	Checks UuidCanonicalTextual format

UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not UuidCanonicalTextual format

	
class gwproto.types.ta_data_channels.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.TaDataChannels_Maker(terminal_asset_g_node_alias, terminal_asset_g_node_id, time_unix_s, author, channels, identifier)

	
	Parameters:

	
	terminal_asset_g_node_alias (str)

	terminal_asset_g_node_id (str)

	time_unix_s (int)

	author (str)

	channels (List[DataChannel])

	identifier (str)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a ta.data.channels.000 message object
into a TaDataChannels python object for internal use.

	This is the near-inverse of the TaDataChannels.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a TaDataChannels object.

	Returns:

	TaDataChannels

	Return type:

	TaDataChannels

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (TaDataChannels)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	TaDataChannels

TelemetryReportingConfig

Python pydantic class corresponding to json type telemetry.reporting.config, version 000.

	
class gwproto.types.TelemetryReportingConfig(*, TelemetryName, AboutNodeName, ReportOnChange, SamplePeriodS, Exponent, Unit, AsyncReportThreshold=None, NameplateMaxValue=None, TypeName='telemetry.reporting.config', Version='000')

	
	Parameters:

	
	TelemetryName (TelemetryName)

	AboutNodeName (str)

	ReportOnChange (bool)

	SamplePeriodS (int)

	Exponent (int)

	Unit (Unit)

	AsyncReportThreshold (float | None)

	NameplateMaxValue (int | None)

	TypeName (Literal['telemetry.reporting.config'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
telemetry.reporting.config.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
telemetry.reporting.config.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the telemetry.reporting.config.000 representation.

Instances in the class are python-native representations of telemetry.reporting.config.000
objects, while the actual telemetry.reporting.config.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is TelemetryReportingConfig.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	
classmethod check_axiom_1(v)

	Axiom 1: Async reporting consistency.
If AsyncReportThreshold exists, so does NameplateMaxValue

	Parameters:

	v (dict)

	Return type:

	dict

	TelemetryName:
	
	Description:

	AboutNodeName:
	
	Description: The name of the SpaceheatNode whose physical quantity is getting captured.

	Format: LeftRightDot

	ReportOnChange:
	
	Description:

	SamplePeriodS:
	
	Description:

	Exponent:
	
	Description: Exponent. Say the TelemetryName is WaterTempCTimes1000; this corresponds to units of Celsius. To match the implication in the name, the Exponent should be 3, and a Value of 65300 would indicate 65.3 deg C

	Unit:
	
	Description:

	AsyncReportThreshold:
	
	Description:

	NameplateMaxValue:
	
	Description:

	Format: PositiveInteger

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.telemetry_reporting_config.check_is_positive_integer(v)

	Must be positive when interpreted as an integer. Interpretation as an
integer follows the pydantic rules for this - which will round down
rational numbers. So 1.7 will be interpreted as 1 and is also fine,
while 0.5 is interpreted as 0 and will raise an exception.

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v < 1

	
class gwproto.types.telemetry_reporting_config.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.TelemetryReportingConfig_Maker(telemetry_name, about_node_name, report_on_change, sample_period_s, exponent, unit, async_report_threshold, nameplate_max_value)

	
	Parameters:

	
	telemetry_name (TelemetryName)

	about_node_name (str)

	report_on_change (bool)

	sample_period_s (int)

	exponent (int)

	unit (Unit)

	async_report_threshold (float | None)

	nameplate_max_value (int | None)

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a telemetry.reporting.config.000 message object
into a TelemetryReportingConfig python object for internal use.

	This is the near-inverse of the TelemetryReportingConfig.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a TelemetryReportingConfig object.

	Returns:

	TelemetryReportingConfig

	Return type:

	TelemetryReportingConfig

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (TelemetryReportingConfig)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	TelemetryReportingConfig

TelemetrySnapshotSpaceheat

Python pydantic class corresponding to json type telemetry.snapshot.spaceheat, version 000.

	
class gwproto.types.TelemetrySnapshotSpaceheat(*, ReportTimeUnixMs, AboutNodeAliasList, ValueList, TelemetryNameList, TypeName='telemetry.snapshot.spaceheat', Version='000')

	Snapshot of Telemetry Data from a SpaceHeat SCADA.

A snapshot of all current sensed states, sent from a spaceheat SCADA to its AtomicTNode.
The nth element of each of the three lists refer to the same reading (i.e., what is getting
read, what the value is, what the TelemetryNames are.)

[More info](https://gridworks-protocol.readthedocs.io/en/latest/spaceheat-node.html)

	Parameters:

	
	ReportTimeUnixMs (int)

	AboutNodeAliasList (List[str])

	ValueList (List[int])

	TelemetryNameList (List[TelemetryName])

	TypeName (Literal['telemetry.snapshot.spaceheat'])

	Version (Literal['000'])

	
as_dict()

	Translate the object into a dictionary representation that can be serialized into a
telemetry.snapshot.spaceheat.000 object.

This method prepares the object for serialization by the as_type method, creating a
dictionary with key-value pairs that follow the requirements for an instance of the
telemetry.snapshot.spaceheat.000 type. Unlike the standard python dict method,
it makes the following substantive changes:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

	Return type:

	Dict[str, Any]

	
as_type()

	Serialize to the telemetry.snapshot.spaceheat.000 representation.

Instances in the class are python-native representations of telemetry.snapshot.spaceheat.000
objects, while the actual telemetry.snapshot.spaceheat.000 object is the serialized UTF-8 byte
string designed for sending in a message.

This method calls the as_dict() method, which differs from the native python dict()
in the following key ways:
- Enum Values: Translates between the values used locally by the actor to the symbol
sent in messages.
- - Removes any key-value pairs where the value is None for a clearer message, especially
in cases with many optional attributes.

It also applies these changes recursively to sub-types.

Its near-inverse is TelemetrySnapshotSpaceheat.type_to_tuple(). If the type (or any sub-types)
includes an enum, then the type_to_tuple will map an unrecognized symbol to the
default enum value. This is why these two methods are only ‘near’ inverses.

	Return type:

	bytes

	
classmethod check_axiom_1(v)

	Axiom 1: ListLengthConsistency.
AboutNodeAliasList, ValueList and TelemetryNameList must all have the same length.

	Parameters:

	v (dict)

	Return type:

	dict

	ReportTimeUnixMs:
	
	Description: ReportTimeUnixMs. The time, in unix ms, that the SCADA creates this type. It may not be when the SCADA sends the type to the atn (for example if Internet is down).

	Format: ReasonableUnixTimeMs

	AboutNodeAliasList:
	
	Description: AboutNodeAliases. The list of Spaceheat nodes in the snapshot.

	Format: LeftRightDot

	ValueList:
	
	Description: ValueList.

	TelemetryNameList:
	
	Description:

	TypeName:
	
	Description: All GridWorks Versioned Types have a fixed TypeName, which is a string of lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character, and final word NOT all Hindu-Arabic numerals.

	Version:
	
	Description: All GridWorks Versioned Types have a fixed version, which is a string of three Hindu-Arabic numerals.

	
class gwproto.types.telemetry_snapshot_spaceheat.check_is_left_right_dot(v)

	Checks LeftRightDot Format

LeftRightDot format: Lowercase alphanumeric words separated by periods, with
the most significant word (on the left) starting with an alphabet character.

	Parameters:

	v (str) – the candidate

	Raises:

	ValueError – if v is not LeftRightDot format

	
class gwproto.types.telemetry_snapshot_spaceheat.check_is_reasonable_unix_time_ms(v)

	Checks ReasonableUnixTimeMs format

ReasonableUnixTimeMs format: unix milliseconds between Jan 1 2000 and Jan 1 3000

	Parameters:

	v (int) – the candidate

	Raises:

	ValueError – if v is not ReasonableUnixTimeMs format

	
class gwproto.types.TelemetrySnapshotSpaceheat_Maker(report_time_unix_ms, about_node_alias_list, value_list, telemetry_name_list)

	
	Parameters:

	
	report_time_unix_ms (int)

	about_node_alias_list (List[str])

	value_list (List[int])

	telemetry_name_list (List[TelemetryName])

	
classmethod dict_to_tuple(d)

	Deserialize a dictionary representation of a telemetry.snapshot.spaceheat.000 message object
into a TelemetrySnapshotSpaceheat python object for internal use.

	This is the near-inverse of the TelemetrySnapshotSpaceheat.as_dict() method:
	
	Enums: translates between the symbols sent in messages between actors and

	the values used by the actors internally once they’ve deserialized the messages.
	
	Types: recursively validates and deserializes sub-types.

Note that if a required attribute with a default value is missing in a dict, this method will
raise a SchemaError. This differs from the pydantic BaseModel practice of auto-completing
missing attributes with default values when they exist.

	Parameters:

	d (dict) – the dictionary resulting from json.loads(t) for a serialized JSON type object t.

	Raises:

	SchemaError – if the dict cannot be turned into a TelemetrySnapshotSpaceheat object.

	Returns:

	TelemetrySnapshotSpaceheat

	Return type:

	TelemetrySnapshotSpaceheat

	
classmethod tuple_to_type(tpl)

	Given a Python class object, returns the serialized JSON type object.

	Parameters:

	tpl (TelemetrySnapshotSpaceheat)

	Return type:

	bytes

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object.

	Parameters:

	t (bytes)

	Return type:

	TelemetrySnapshotSpaceheat

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/thegridelectric/gridworks-protocol]

	Documentation [https://gridworks-protocol.readthedocs.io/]

	Issue Tracker [https://github.com/thegridelectric/gridworks-protocol/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/thegridelectric/gridworks-protocol/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/thegridelectric/gridworks-protocol/issues].

How to set up your development environment

You need Python 3.7+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

	nox-poetry [https://nox-poetry.readthedocs.io/]

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session,
or the command-line interface:

$ poetry run python
$ poetry run gridworks-protocol

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/thegridelectric/gridworks-protocol/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

GridWorks Energy Consulting Code of Conduct

Basic Truth

All humans are worthy.

Scope

This Code of Conduct applies to moderation of comments, issues and commits within
this repository to support its alignment to the above basic truth.

Enforcement Responsibilities

GridWorks Energy Consulting LLC [https://gridworks-consulting.com/] (gridworks@gridworks-consulting.com)
owns and administers this repository, and is ultimately responsible for enforcement of standards of
behavior. They are responsible for merges to dev and main branches, and maintain the right and
responsibility to remove, edit, or reject comments, commits, code, docuentation edits, issues, and other contributions
that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

If you read something in this repo that you want GridWorks to consider moderating, please
send an email to them at gridworks@gridworks-consulting.com.
All complaints will be reviewed and investigated, and GridWorks will respect
the privacy and security of the reporter of any incident.

What not to add to this repo

Ways to trigger GridWorks moderation enforcement:

	Publish others’ private information, such as a physical or email address,
without their explicit permission

	Use of sexualized language or imagery, or make sexual advances

	Troll

Suggestions

	Empathize

	Recognize you are worthy of contributing, and do so in the face of confusion and doubt; you can help clarify things for everyone

	Be interested in differing opinions, viewpoints, and experiences

	Give and accept constructive feedback

	Accept responsibility for your mistakes and learn from them

	Recognize everybody makes mistakes, and forgive

	Focus on the highest good for all

Enforcement Escalation

1. Correction

A private, written request from GridWorks to change or edit a comment, commit, or issue.

2. Warning

With a warning, GridWorks may remove your comments, commits or issues. They may also
freeze a conversation.

3. Temporary Ban

A temporary ban from any sort of interaction or public
communication within the repository for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

A permanent ban from any sort of interaction within the repository.

Attribution

This Code of Conduct is loosely adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

License

MIT License

Copyright © 2022 Jessica Millar

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gwproto	

 	
 	
 gwproto.enums	

 	
 	
 gwproto.types	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	ActorClass (class in gwproto.enums)

 	as_dict() (gwproto.types.ComponentAttributeClassGt method)

 	(gwproto.types.ComponentGt method)

 	(gwproto.types.DataChannel method)

 	(gwproto.types.EgaugeIo method)

 	(gwproto.types.EgaugeRegisterConfig method)

 	(gwproto.types.ElectricMeterCacGt method)

 	(gwproto.types.GtDispatchBoolean method)

 	(gwproto.types.GtDispatchBooleanLocal method)

 	(gwproto.types.GtDriverBooleanactuatorCmd method)

 	(gwproto.types.GtShBooleanactuatorCmdStatus method)

 	(gwproto.types.GtShCliAtnCmd method)

 	(gwproto.types.GtShMultipurposeTelemetryStatus method)

 	(gwproto.types.GtShSimpleTelemetryStatus method)

 	(gwproto.types.GtShStatus method)

 	(gwproto.types.GtShTelemetryFromMultipurposeSensor method)

 	(gwproto.types.GtTelemetry method)

 	(gwproto.types.HeartbeatB method)

 	(gwproto.types.MultipurposeSensorCacGt method)

 	(gwproto.types.PipeFlowSensorCacGt method)

 	(gwproto.types.PipeFlowSensorComponentGt method)

 	(gwproto.types.PowerWatts method)

 	(gwproto.types.RelayCacGt method)

 	(gwproto.types.RelayComponentGt method)

 	(gwproto.types.ResistiveHeaterCacGt method)

 	(gwproto.types.ResistiveHeaterComponentGt method)

 	(gwproto.types.SimpleTempSensorCacGt method)

 	(gwproto.types.SimpleTempSensorComponentGt method)

 	(gwproto.types.SnapshotSpaceheat method)

 	(gwproto.types.SpaceheatNodeGt method)

 	(gwproto.types.TaDataChannels method)

 	(gwproto.types.TelemetryReportingConfig method)

 	(gwproto.types.TelemetrySnapshotSpaceheat method)

 	
 	as_type() (gwproto.types.ComponentAttributeClassGt method)

 	(gwproto.types.ComponentGt method)

 	(gwproto.types.DataChannel method)

 	(gwproto.types.EgaugeIo method)

 	(gwproto.types.EgaugeRegisterConfig method)

 	(gwproto.types.ElectricMeterCacGt method)

 	(gwproto.types.GtDispatchBoolean method)

 	(gwproto.types.GtDispatchBooleanLocal method)

 	(gwproto.types.GtDriverBooleanactuatorCmd method)

 	(gwproto.types.GtShBooleanactuatorCmdStatus method)

 	(gwproto.types.GtShCliAtnCmd method)

 	(gwproto.types.GtShMultipurposeTelemetryStatus method)

 	(gwproto.types.GtShSimpleTelemetryStatus method)

 	(gwproto.types.GtShStatus method)

 	(gwproto.types.GtShTelemetryFromMultipurposeSensor method)

 	(gwproto.types.GtTelemetry method)

 	(gwproto.types.HeartbeatB method)

 	(gwproto.types.MultipurposeSensorCacGt method)

 	(gwproto.types.PipeFlowSensorCacGt method)

 	(gwproto.types.PipeFlowSensorComponentGt method)

 	(gwproto.types.PowerWatts method)

 	(gwproto.types.RelayCacGt method)

 	(gwproto.types.RelayComponentGt method)

 	(gwproto.types.ResistiveHeaterCacGt method)

 	(gwproto.types.ResistiveHeaterComponentGt method)

 	(gwproto.types.SimpleTempSensorCacGt method)

 	(gwproto.types.SimpleTempSensorComponentGt method)

 	(gwproto.types.SnapshotSpaceheat method)

 	(gwproto.types.SpaceheatNodeGt method)

 	(gwproto.types.TaDataChannels method)

 	(gwproto.types.TelemetryReportingConfig method)

 	(gwproto.types.TelemetrySnapshotSpaceheat method)

C

 	
 	check_axiom_1() (gwproto.types.GtShMultipurposeTelemetryStatus class method)

 	(gwproto.types.GtShSimpleTelemetryStatus class method)

 	(gwproto.types.GtShTelemetryFromMultipurposeSensor class method)

 	(gwproto.types.TelemetryReportingConfig class method)

 	(gwproto.types.TelemetrySnapshotSpaceheat class method)

 	check_is_bit (class in gwproto.types.gt_dispatch_boolean)

 	(class in gwproto.types.gt_dispatch_boolean_local)

 	(class in gwproto.types.gt_driver_booleanactuator_cmd)

 	check_is_hex_char (class in gwproto.types.heartbeat_b)

 	check_is_left_right_dot (class in gwproto.types.gt_dispatch_boolean)

 	(class in gwproto.types.gt_dispatch_boolean_local)

 	(class in gwproto.types.gt_driver_booleanactuator_cmd)

 	(class in gwproto.types.gt_sh_booleanactuator_cmd_status)

 	(class in gwproto.types.gt_sh_cli_atn_cmd)

 	(class in gwproto.types.gt_sh_multipurpose_telemetry_status)

 	(class in gwproto.types.gt_sh_simple_telemetry_status)

 	(class in gwproto.types.gt_sh_status)

 	(class in gwproto.types.gt_sh_telemetry_from_multipurpose_sensor)

 	(class in gwproto.types.heartbeat_b)

 	(class in gwproto.types.multipurpose_sensor_component_gt)

 	(class in gwproto.types.snapshot_spaceheat)

 	(class in gwproto.types.spaceheat_node_gt)

 	(class in gwproto.types.ta_data_channels)

 	(class in gwproto.types.telemetry_reporting_config)

 	(class in gwproto.types.telemetry_snapshot_spaceheat)

 	check_is_non_negative_integer (class in gwproto.types.electric_meter_component_gt)

 	check_is_positive_integer (class in gwproto.types.electric_meter_cac_gt)

 	(class in gwproto.types.electric_meter_component_gt)

 	(class in gwproto.types.resistive_heater_cac_gt)

 	(class in gwproto.types.spaceheat_node_gt)

 	(class in gwproto.types.telemetry_reporting_config)

 	check_is_reasonable_unix_time_ms (class in gwproto.types.gt_dispatch_boolean)

 	(class in gwproto.types.gt_dispatch_boolean_local)

 	(class in gwproto.types.gt_driver_booleanactuator_cmd)

 	(class in gwproto.types.gt_sh_booleanactuator_cmd_status)

 	(class in gwproto.types.gt_sh_multipurpose_telemetry_status)

 	(class in gwproto.types.gt_sh_simple_telemetry_status)

 	(class in gwproto.types.gt_sh_telemetry_from_multipurpose_sensor)

 	(class in gwproto.types.gt_telemetry)

 	(class in gwproto.types.heartbeat_b)

 	(class in gwproto.types.telemetry_snapshot_spaceheat)

 	
 	check_is_reasonable_unix_time_s (class in gwproto.types.gt_sh_status)

 	(class in gwproto.types.ta_data_channels)

 	check_is_spaceheat_name (class in gwproto.types.data_channel)

 	check_is_uuid_canonical_textual (class in gwproto.types.component_attribute_class_gt)

 	(class in gwproto.types.component_gt)

 	(class in gwproto.types.electric_meter_cac_gt)

 	(class in gwproto.types.electric_meter_component_gt)

 	(class in gwproto.types.gt_dispatch_boolean)

 	(class in gwproto.types.gt_sh_cli_atn_cmd)

 	(class in gwproto.types.gt_sh_status)

 	(class in gwproto.types.heartbeat_b)

 	(class in gwproto.types.multipurpose_sensor_cac_gt)

 	(class in gwproto.types.multipurpose_sensor_component_gt)

 	(class in gwproto.types.pipe_flow_sensor_cac_gt)

 	(class in gwproto.types.pipe_flow_sensor_component_gt)

 	(class in gwproto.types.relay_cac_gt)

 	(class in gwproto.types.relay_component_gt)

 	(class in gwproto.types.resistive_heater_cac_gt)

 	(class in gwproto.types.resistive_heater_component_gt)

 	(class in gwproto.types.simple_temp_sensor_cac_gt)

 	(class in gwproto.types.simple_temp_sensor_component_gt)

 	(class in gwproto.types.snapshot_spaceheat)

 	(class in gwproto.types.spaceheat_node_gt)

 	(class in gwproto.types.ta_data_channels)

 	ComponentAttributeClassGt (class in gwproto.types)

 	ComponentAttributeClassGt_Maker (class in gwproto.types)

 	ComponentGt (class in gwproto.types)

 	ComponentGt_Maker (class in gwproto.types)

D

 	
 	DataChannel (class in gwproto.types)

 	DataChannel_Maker (class in gwproto.types)

 	default() (gwproto.enums.ActorClass class method)

 	(gwproto.enums.LocalCommInterface class method)

 	(gwproto.enums.MakeModel class method)

 	(gwproto.enums.Role class method)

 	(gwproto.enums.TelemetryName class method)

 	(gwproto.enums.Unit class method)

 	dict_to_tuple() (gwproto.types.ComponentAttributeClassGt_Maker class method)

 	(gwproto.types.ComponentGt_Maker class method)

 	(gwproto.types.DataChannel_Maker class method)

 	(gwproto.types.EgaugeIo_Maker class method)

 	(gwproto.types.EgaugeRegisterConfig_Maker class method)

 	(gwproto.types.ElectricMeterCacGt_Maker class method)

 	(gwproto.types.GtDispatchBoolean_Maker class method)

 	(gwproto.types.GtDispatchBooleanLocal_Maker class method)

 	(gwproto.types.GtDriverBooleanactuatorCmd_Maker class method)

 	(gwproto.types.GtShBooleanactuatorCmdStatus_Maker class method)

 	(gwproto.types.GtShCliAtnCmd_Maker class method)

 	(gwproto.types.GtShMultipurposeTelemetryStatus_Maker class method)

 	(gwproto.types.GtShSimpleTelemetryStatus_Maker class method)

 	(gwproto.types.GtShStatus_Maker class method)

 	(gwproto.types.GtShTelemetryFromMultipurposeSensor_Maker class method)

 	(gwproto.types.GtTelemetry_Maker class method)

 	(gwproto.types.HeartbeatB_Maker class method)

 	(gwproto.types.MultipurposeSensorCacGt_Maker class method)

 	(gwproto.types.PipeFlowSensorCacGt_Maker class method)

 	(gwproto.types.PipeFlowSensorComponentGt_Maker class method)

 	(gwproto.types.PowerWatts_Maker class method)

 	(gwproto.types.RelayCacGt_Maker class method)

 	(gwproto.types.RelayComponentGt_Maker class method)

 	(gwproto.types.ResistiveHeaterCacGt_Maker class method)

 	(gwproto.types.ResistiveHeaterComponentGt_Maker class method)

 	(gwproto.types.SimpleTempSensorCacGt_Maker class method)

 	(gwproto.types.SimpleTempSensorComponentGt_Maker class method)

 	(gwproto.types.SnapshotSpaceheat_Maker class method)

 	(gwproto.types.SpaceheatNodeGt_Maker class method)

 	(gwproto.types.TaDataChannels_Maker class method)

 	(gwproto.types.TelemetryReportingConfig_Maker class method)

 	(gwproto.types.TelemetrySnapshotSpaceheat_Maker class method)

E

 	
 	EgaugeIo (class in gwproto.types)

 	EgaugeIo_Maker (class in gwproto.types)

 	EgaugeRegisterConfig (class in gwproto.types)

 	EgaugeRegisterConfig_Maker (class in gwproto.types)

 	ElectricMeterCacGt (class in gwproto.types)

 	ElectricMeterCacGt_Maker (class in gwproto.types)

 	enum_name() (gwproto.enums.ActorClass class method)

 	(gwproto.enums.LocalCommInterface class method)

 	(gwproto.enums.MakeModel class method)

 	(gwproto.enums.Role class method)

 	(gwproto.enums.TelemetryName class method)

 	(gwproto.enums.Unit class method)

 	
 	enum_version() (gwproto.enums.ActorClass class method)

 	(gwproto.enums.LocalCommInterface class method)

 	(gwproto.enums.MakeModel class method)

 	(gwproto.enums.Role class method)

 	(gwproto.enums.TelemetryName class method)

 	(gwproto.enums.Unit class method)

F

 	
 	FibaroSmartImplantCacGt (class in gwproto.types)

 	FibaroSmartImplantCacGt_Maker (class in gwproto.types)

 	
 	FibaroSmartImplantComponentGt (class in gwproto.types)

 	FibaroSmartImplantComponentGt_Maker (class in gwproto.types)

G

 	
 	GtDispatchBoolean (class in gwproto.types)

 	GtDispatchBoolean_Maker (class in gwproto.types)

 	GtDispatchBooleanLocal (class in gwproto.types)

 	GtDispatchBooleanLocal_Maker (class in gwproto.types)

 	GtDriverBooleanactuatorCmd (class in gwproto.types)

 	GtDriverBooleanactuatorCmd_Maker (class in gwproto.types)

 	GtShBooleanactuatorCmdStatus (class in gwproto.types)

 	GtShBooleanactuatorCmdStatus_Maker (class in gwproto.types)

 	GtShCliAtnCmd (class in gwproto.types)

 	GtShCliAtnCmd_Maker (class in gwproto.types)

 	GtShMultipurposeTelemetryStatus (class in gwproto.types)

 	GtShMultipurposeTelemetryStatus_Maker (class in gwproto.types)

 	
 	GtShSimpleTelemetryStatus (class in gwproto.types)

 	GtShSimpleTelemetryStatus_Maker (class in gwproto.types)

 	GtShStatus (class in gwproto.types)

 	GtShStatus_Maker (class in gwproto.types)

 	GtShTelemetryFromMultipurposeSensor (class in gwproto.types)

 	GtShTelemetryFromMultipurposeSensor_Maker (class in gwproto.types)

 	GtTelemetry (class in gwproto.types)

 	GtTelemetry_Maker (class in gwproto.types)

 	
 gwproto.enums

 	module

 	
 gwproto.types

 	module

H

 	
 	HeartbeatB (class in gwproto.types)

 	HeartbeatB_Maker (class in gwproto.types)

 	HubitatCacGt (class in gwproto.types)

 	HubitatCacGt_Maker (class in gwproto.types)

 	HubitatComponentGt (class in gwproto.types)

 	HubitatComponentGt_Maker (class in gwproto.types)

 	HubitatPollerCacGt (class in gwproto.types)

 	
 	HubitatPollerCacGt_Maker (class in gwproto.types)

 	HubitatPollerComponentGt (class in gwproto.types)

 	HubitatPollerComponentGt_Maker (class in gwproto.types)

 	HubitatTankCacGt (class in gwproto.types)

 	HubitatTankCacGt_Maker (class in gwproto.types)

 	HubitatTankComponentGt (class in gwproto.types)

 	HubitatTankComponentGt_Maker (class in gwproto.types)

L

 	
 	LocalCommInterface (class in gwproto.enums)

M

 	
 	MakeModel (class in gwproto.enums)

 	
 module

 	gwproto.enums

 	gwproto.types

 	
 	MultipurposeSensorCacGt (class in gwproto.types)

 	MultipurposeSensorCacGt_Maker (class in gwproto.types)

P

 	
 	PipeFlowSensorCacGt (class in gwproto.types)

 	PipeFlowSensorCacGt_Maker (class in gwproto.types)

 	PipeFlowSensorComponentGt (class in gwproto.types)

 	
 	PipeFlowSensorComponentGt_Maker (class in gwproto.types)

 	PowerWatts (class in gwproto.types)

 	PowerWatts_Maker (class in gwproto.types)

R

 	
 	RelayCacGt (class in gwproto.types)

 	RelayCacGt_Maker (class in gwproto.types)

 	RelayComponentGt (class in gwproto.types)

 	RelayComponentGt_Maker (class in gwproto.types)

 	
 	ResistiveHeaterCacGt (class in gwproto.types)

 	ResistiveHeaterCacGt_Maker (class in gwproto.types)

 	ResistiveHeaterComponentGt (class in gwproto.types)

 	ResistiveHeaterComponentGt_Maker (class in gwproto.types)

 	Role (class in gwproto.enums)

S

 	
 	SimpleTempSensorCacGt (class in gwproto.types)

 	SimpleTempSensorCacGt_Maker (class in gwproto.types)

 	SimpleTempSensorComponentGt (class in gwproto.types)

 	SimpleTempSensorComponentGt_Maker (class in gwproto.types)

 	SnapshotSpaceheat (class in gwproto.types)

 	SnapshotSpaceheat_Maker (class in gwproto.types)

 	SpaceheatNodeGt (class in gwproto.types)

 	SpaceheatNodeGt_Maker (class in gwproto.types)

 	symbol_to_value() (gwproto.enums.ActorClass class method)

 	(gwproto.enums.LocalCommInterface class method)

 	(gwproto.enums.MakeModel class method)

 	(gwproto.enums.Role class method)

 	(gwproto.enums.TelemetryName class method)

 	(gwproto.enums.Unit class method)

 	
 	symbols() (gwproto.enums.ActorClass class method)

 	(gwproto.enums.LocalCommInterface class method)

 	(gwproto.enums.MakeModel class method)

 	(gwproto.enums.Role class method)

 	(gwproto.enums.TelemetryName class method)

 	(gwproto.enums.Unit class method)

T

 	
 	TaDataChannels (class in gwproto.types)

 	TaDataChannels_Maker (class in gwproto.types)

 	TelemetryName (class in gwproto.enums)

 	TelemetryReportingConfig (class in gwproto.types)

 	TelemetryReportingConfig_Maker (class in gwproto.types)

 	TelemetrySnapshotSpaceheat (class in gwproto.types)

 	TelemetrySnapshotSpaceheat_Maker (class in gwproto.types)

 	tuple_to_type() (gwproto.types.ComponentAttributeClassGt_Maker class method)

 	(gwproto.types.ComponentGt_Maker class method)

 	(gwproto.types.DataChannel_Maker class method)

 	(gwproto.types.EgaugeIo_Maker class method)

 	(gwproto.types.EgaugeRegisterConfig_Maker class method)

 	(gwproto.types.ElectricMeterCacGt_Maker class method)

 	(gwproto.types.GtDispatchBoolean_Maker class method)

 	(gwproto.types.GtDispatchBooleanLocal_Maker class method)

 	(gwproto.types.GtDriverBooleanactuatorCmd_Maker class method)

 	(gwproto.types.GtShBooleanactuatorCmdStatus_Maker class method)

 	(gwproto.types.GtShCliAtnCmd_Maker class method)

 	(gwproto.types.GtShMultipurposeTelemetryStatus_Maker class method)

 	(gwproto.types.GtShSimpleTelemetryStatus_Maker class method)

 	(gwproto.types.GtShStatus_Maker class method)

 	(gwproto.types.GtShTelemetryFromMultipurposeSensor_Maker class method)

 	(gwproto.types.GtTelemetry_Maker class method)

 	(gwproto.types.HeartbeatB_Maker class method)

 	(gwproto.types.MultipurposeSensorCacGt_Maker class method)

 	(gwproto.types.PipeFlowSensorCacGt_Maker class method)

 	(gwproto.types.PipeFlowSensorComponentGt_Maker class method)

 	(gwproto.types.PowerWatts_Maker class method)

 	(gwproto.types.RelayCacGt_Maker class method)

 	(gwproto.types.RelayComponentGt_Maker class method)

 	(gwproto.types.ResistiveHeaterCacGt_Maker class method)

 	(gwproto.types.ResistiveHeaterComponentGt_Maker class method)

 	(gwproto.types.SimpleTempSensorCacGt_Maker class method)

 	(gwproto.types.SimpleTempSensorComponentGt_Maker class method)

 	(gwproto.types.SnapshotSpaceheat_Maker class method)

 	(gwproto.types.SpaceheatNodeGt_Maker class method)

 	(gwproto.types.TaDataChannels_Maker class method)

 	(gwproto.types.TelemetryReportingConfig_Maker class method)

 	(gwproto.types.TelemetrySnapshotSpaceheat_Maker class method)

 	
 	type_to_tuple() (gwproto.types.ComponentAttributeClassGt_Maker class method)

 	(gwproto.types.ComponentGt_Maker class method)

 	(gwproto.types.DataChannel_Maker class method)

 	(gwproto.types.EgaugeIo_Maker class method)

 	(gwproto.types.EgaugeRegisterConfig_Maker class method)

 	(gwproto.types.ElectricMeterCacGt_Maker class method)

 	(gwproto.types.GtDispatchBoolean_Maker class method)

 	(gwproto.types.GtDispatchBooleanLocal_Maker class method)

 	(gwproto.types.GtDriverBooleanactuatorCmd_Maker class method)

 	(gwproto.types.GtShBooleanactuatorCmdStatus_Maker class method)

 	(gwproto.types.GtShCliAtnCmd_Maker class method)

 	(gwproto.types.GtShMultipurposeTelemetryStatus_Maker class method)

 	(gwproto.types.GtShSimpleTelemetryStatus_Maker class method)

 	(gwproto.types.GtShStatus_Maker class method)

 	(gwproto.types.GtShTelemetryFromMultipurposeSensor_Maker class method)

 	(gwproto.types.GtTelemetry_Maker class method)

 	(gwproto.types.HeartbeatB_Maker class method)

 	(gwproto.types.MultipurposeSensorCacGt_Maker class method)

 	(gwproto.types.PipeFlowSensorCacGt_Maker class method)

 	(gwproto.types.PipeFlowSensorComponentGt_Maker class method)

 	(gwproto.types.PowerWatts_Maker class method)

 	(gwproto.types.RelayCacGt_Maker class method)

 	(gwproto.types.RelayComponentGt_Maker class method)

 	(gwproto.types.ResistiveHeaterCacGt_Maker class method)

 	(gwproto.types.ResistiveHeaterComponentGt_Maker class method)

 	(gwproto.types.SimpleTempSensorCacGt_Maker class method)

 	(gwproto.types.SimpleTempSensorComponentGt_Maker class method)

 	(gwproto.types.SnapshotSpaceheat_Maker class method)

 	(gwproto.types.SpaceheatNodeGt_Maker class method)

 	(gwproto.types.TaDataChannels_Maker class method)

 	(gwproto.types.TelemetryReportingConfig_Maker class method)

 	(gwproto.types.TelemetrySnapshotSpaceheat_Maker class method)

U

 	
 	Unit (class in gwproto.enums)

V

 	
 	value_to_symbol() (gwproto.enums.ActorClass class method)

 	(gwproto.enums.LocalCommInterface class method)

 	(gwproto.enums.MakeModel class method)

 	(gwproto.enums.Role class method)

 	(gwproto.enums.TelemetryName class method)

 	(gwproto.enums.Unit class method)

 	values() (gwproto.enums.ActorClass class method)

 	(gwproto.enums.LocalCommInterface class method)

 	(gwproto.enums.MakeModel class method)

 	(gwproto.enums.Role class method)

 	(gwproto.enums.TelemetryName class method)

 	(gwproto.enums.Unit class method)

 	
 	version() (gwproto.enums.ActorClass class method)

 	(gwproto.enums.LocalCommInterface class method)

 	(gwproto.enums.MakeModel class method)

 	(gwproto.enums.Role class method)

 	(gwproto.enums.TelemetryName class method)

 	(gwproto.enums.Unit class method)

 nav.xhtml

 Table of Contents

 		
 GW PROTO

_static/file.png

_static/minus.png

_static/plus.png

